Advertisements
Advertisements
प्रश्न
बिंदु P(–6, 8) की मूलबिंदु से दूरी ______ है।
विकल्प
8
`2sqrt7`
10
6
उत्तर
बिंदु P(–6, 8) की मूलबिंदु से दूरी 10 है।
स्पष्टीकरण:
दूरी सूत्र: d2 = (x2 – x1)2 + (y2 – y1)2
प्रश्न के अनुसार,
हमारे पास है,
x1 = – 6, x2 = 0
y1 = 8, y2 = 0
d2 = [0 – (– 6)]2 + [0 – 8]2
d = `sqrt((0 - (-6))^2 + (0 - 8)^2`
d = `sqrt((6)^2 + (-8)^2`
d = `sqrt(36 + 64)`
d = `sqrt(100)`
d = 10
इसलिए, P(–6, 8) और मूल O(0, 0) के बीच की दूरी 10 है।
APPEARS IN
संबंधित प्रश्न
नीचे दिए गए बिंदु एकरेखीय हैं या नहीं? इसकी जाँच कीजिए।
A(1, −3), B(2, −5), C(−4, 7)
सिद्ध कीजिए कि, P(2, -2), Q(7, 3), R(11, -1) और S(6, -6) समांतर चर्तुभुज के शीर्षबिंदु है।
निम्नलिखित बिंदुओं को जोड़नेवाले रेखाखंड त्रिभुज बना सकते हैं क्या? यदि त्रिभुज बनता हो तो भुजाओं के आधार पर त्रिभुज का प्रकार लिखिए।
P(-2, -6), Q(-4, -2), R(-5, 0)
शीर्ष बिंदु A(7, 1), B(3, 5) और C(2, 0) वाले त्रिभुज के परिवृत्त के केंद्र (परिकेंद्र) का निर्देशांक और त्रिज्या ज्ञात कीजिए।
y का वह मान ज्ञात कीजिए, जिसके लिए बिंदु P(2, -3) और Q(10, y) के बीच की दूरी 10 मात्रक है।
निम्नलिखित बिंदुओं द्वारा बनने वाले चतुर्भुज का प्रकार (यदि कोई है तो) बताइए तथा अपने उत्तर के लिए कारण भी दीजिए:
(-1, -2,), (1, 0), (-1, 2), (-3, 0)
किसी वर्ग के दो सम्मुख शीर्ष (-1, 2) और (3, 2) हैं। वर्ग के अन्य दोनों शीर्ष ज्ञात कीजिए।
मूलबिंदु को केंद्र मान कर खींचा गया एक वृत्त बिंदु `(13/2, 0)` से होकर जाता है। तब, वृत्त के अभ्यंतर में निम्नलिखित बिंदु स्थित नहीं ______ है।
एक वृत्त का केंद्र मूलबिंदु पर है तथा एक बिंदु P(5, 0) इस वृत्त पर स्थित है। बिंदु Q(6, 8) इस वृत्त के बाहर स्थित है।
किसी वृत्त का केन्द्र (2a, a – 7) है। यदि वृत्त, बिंदु (11, – 9) से होकर जाता है और उसका व्यास `10sqrt(2)` इकाई है, तो a के मान ज्ञात कीजिए।