Advertisements
Advertisements
Question
x-अक्ष पर स्थित ऐसे बिंदु ज्ञात कीजिए, जो बिंदु (7, – 4) से `2sqrt(5)` की दूरी पर हैं। ऐसे कितने बिंदु हैं?
Solution
हम जानते हैं कि, x-अक्ष पर प्रत्येक बिंदु (x, 0) के रूप में होता है।
मान लीजिए कि x-अक्ष पर बिंदु P(x, 0) की बिंदु Q(7, – 4) से `2sqrt(5)` दूरी है।
दी गयी शर्त से,
PQ = `2sqrt(5)` ...`[∵ "दूरी सूत्र" = sqrt((x_2 - x_1)^2 + (y_2 - y_1)^2)]`
⇒ (PQ)2 = 4 × 5
⇒ (x – 7)2 + (0 + 4)2 = 20
⇒ x2 + 49 – 14x + 16 = 20
⇒ x2 – 14x + 65 – 20 = 0
⇒ x2 – 14x + 45 = 0
⇒ x2 – 9x – 5x + 45 = 0 ...[गुणनखंडन विधि द्वारा]
⇒ x(x – 9) – 5(x – 9) = 0
⇒ (x – 9)(x – 5) = 0
∴ x = 5, 9
अत:, अक्ष पर दो बिंदु स्थित हैं, जो (5, 0) और (9, 0) हैं, बिंदु (7, – 4) से `2sqrt(5)` दूरी है।
APPEARS IN
RELATED QUESTIONS
नीचे दिए गए बिंदु एकरेखीय हैं या नहीं? इसकी जाँच कीजिए।
P(-2, 3), Q(1, 2), R(4, 1)
निम्नलिखित बिंदुओं को जोड़नेवाले रेखाखंड त्रिभुज बना सकते हैं क्या? यदि त्रिभुज बनता हो तो भुजाओं के आधार पर त्रिभुज का प्रकार लिखिए।
L(6, 4), M(-5, -3), N(-6, 8)
निम्नलिखित बिंदुओं को जोड़नेवाले रेखाखंड त्रिभुज बना सकते हैं क्या? यदि त्रिभुज बनता हो तो भुजाओं के आधार पर त्रिभुज का प्रकार लिखिए।
A(`sqrt2, sqrt2`), B(`-sqrt2 , -sqrt2`), C(`-sqrt6 , sqrt6`)
बिंदुओं A(-4, -2), B(-3, -7) C(3, -2) और D(2, 3) को क्रम से जोड़ने पर बनने वाले `square`ABCD का प्रकार लिखिए।
बिंदुओं के निम्नलिखित युग्मों के बीच की दूरी ज्ञात कीजिए:
(2, 3), (4, 1)
निम्नलिखित बिंदुओं द्वारा बनने वाले चतुर्भुज का प्रकार (यदि कोई है तो) बताइए तथा अपने उत्तर के लिए कारण भी दीजिए:
(-1, -2,), (1, 0), (-1, 2), (-3, 0)
बिंदुओं (0, 5) और (–5, 0) के बीच की दूरी ______ है।
एक वृत्त का केंद्र मूलबिंदु पर है तथा एक बिंदु P(5, 0) इस वृत्त पर स्थित है। बिंदु Q(6, 8) इस वृत्त के बाहर स्थित है।
a का मान ज्ञात कीजिए, यदि बिंदुओं A(–3, –14) और B(a, –5) के बीच की दूरी 9 इकाई है।
बिन्दु O(0, 0) तथा P(3, 4) के बीच की दूरी ज्ञात कीजिए।