मराठी
महाराष्ट्र राज्य शिक्षण मंडळएस.एस.सी (हिंदी माध्यम) इयत्ता १० वी

यदि बिंदु P(2, 1), Q(-1, 3), R(-5, -3) और S(-2, -5) हो तो सिद्ध कीजिए कि □PQRS एक आयत है। - Mathematics 2 - Geometry [गणित २ - ज्यामिति]

Advertisements
Advertisements

प्रश्न

यदि बिंदु P(2, 1), Q(-1, 3), R(-5, -3) और S(-2, -5) हो तो सिद्ध कीजिए कि `square`PQRS एक आयत है।  

बेरीज

उत्तर

मानो कि, P(2, 1) = (x1, y1); Q(-1, 3) = (x2, y2); R(-5, -3) = (x3, y3) और S(-2, -5) = (x4, y4). 

दूरी सूत्र से,

PQ = `sqrt((x_2 - x_1)^2 + (y_2 - y_1)^2)`

= `sqrt((-1 - 2)^2 + (3 - 1)^2)`

= `sqrt((-3)^2 + (2)^2) = sqrt(9 + 4)`

= `sqrt13` ...................(1)

QR = `sqrt((x_3 - x_2)^2 + (y_3 - y_2)^2)`

= `sqrt([-5 - (-1)]^2 + (-3 - 3)^2)`

= `sqrt((-4)^2 + (-6)^2)`

= `sqrt(16 + 36) = sqrt52`

= `sqrt(2 xx 2 xx 13)`

= `2sqrt13` ..................(2)

RS = `sqrt((x_4 - x_3)^2 + (y_4 - y_3)^2)`

= `sqrt([-2 - (-5)]^2 + [-5 - (-3)]^2)`

= `sqrt((-2 + 5)^2 + (-5 + 3)^2)`

= `sqrt(3^2 + (-2)^2) = sqrt(9 + 4)`

= `sqrt13` .................(3)

PS = `sqrt((x_4 - x_1)^2 + (y_4 - y_1)^2)`

= `sqrt((-2 - 2)^2 + (-5 - 1)^2)`

= `sqrt((-4)^2 + (-6)^2)`

= `sqrt(16 + 36) = sqrt52 = sqrt(2 xx 2 xx 13)`

= `2sqrt13` ......................(4)

`square`PQRS में,

PQ = RS .........................[(1) और (3) से]

QR = PS ..........................[(2) और (4) से]

यदि किसी भी चतुर्भुज में सम्मुख भुजाओं की जोड़ियाँ परस्पर सर्वांगसम हों, तो वह समांतर चतुर्भुज होता है |

∴ `square`PQRS एक समांतर चतुर्भुज है |

दूरी सूत्र से,

PR = `sqrt((x_3 - x_1)^2 + (y_3 - y_1)^2)`

= `sqrt((-5 - 2)^2 + (-3 - 1)^2)`

= `sqrt((-7)^2 + (-4)^2) = sqrt(49 + 16)`

= `sqrt65` ........................(5)

QS = `sqrt((x_4 - x_2)^2 + (y_4 - y_2)^2)`

= `sqrt([-2 - (-1)]^2 + ((-5 - 3)^2)`

= `sqrt((-1)^2 + (-8)^2) = sqrt(1 + 64)`

= `sqrt65` .......................................(6)

समांतर चतुर्भुज PQRS में,

PR = QS ............................[(5) और (6) से]

यदि किसी समांतर चतुर्भुज के विकर्ण परस्पर सर्वांगसम हों, तो वह एक आयत है |

∴ `sqrt`PQRS एक आयत है | 

shaalaa.com
दूरी सूत्र
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 5: निर्देशांक भूमिति - प्रकीर्ण प्रश्नसंग्रह 5 [पृष्ठ १२३]

APPEARS IN

बालभारती Geometry (Mathematics 2) [Hindi] 10 Standard SSC Maharashtra State Board
पाठ 5 निर्देशांक भूमिति
प्रकीर्ण प्रश्नसंग्रह 5 | Q 12. | पृष्ठ १२३

संबंधित प्रश्‍न

नीचे दिए गए बिंदु एकरेखीय हैं या नहीं? इसकी जाँच कीजिए।

L(-2, 3), M(1, -3), N(5, 4) 


निम्नलिखित बिंदुओं को जोड़नेवाले रेखाखंड त्रिभुज बना सकते हैं क्या? यदि त्रिभुज बनता हो तो भुजाओं के आधार पर त्रिभुज का प्रकार लिखिए।

P(-2, -6), Q(-4, -2), R(-5, 0)


बिंदुओं (0,0) और (36, 15) के बीच की दूरी ज्ञात कीजिए। क्या अब आप अनुच्छेद 7.2 में दिए दोनों शहरों A और B के बीच की दूरी ज्ञात कर सकते हैं?


किसी कक्षा में, चार मित्र बिंदुओं A, B, C और D पर बैठे हुए हैं, जैसाकि आकृति में दर्शाया गया है। चंपा और चमेली कक्षा के अंदर आती हैं और कुछ मिनट तक देखने के बाद, चंपा चमेली से पूछती है, 'क्या तुम नहीं सोचती हो कि ABCD एक वर्ग है?' चमेली इससे सहमत नहीं है। दूरी सूत्र का प्रयोग करके, बताइए कि इनमें कौन सही है?


x-अक्ष पर वह बिंदु ज्ञात कीजिए जो (2, -5) और (-2, 9) से समदूरस्थ हैं।


यदि Q(0, 1) बिंदुओं P(5, –3) और R(x, 6) से समदूरस्थ है, तो x के मान ज्ञात कीजिए। दूरियाँ QR और PR भी ज्ञात कीजिए।


बिंदुओं (0, 5) और (–5, 0) के बीच की दूरी ______ है।


एक वृत्त का केंद्र मूलबिंदु पर है तथा एक बिंदु P(5, 0) इस वृत्त पर स्थित है। बिंदु Q(6, 8) इस वृत्त के बाहर स्थित है।


बिंदु A(–1, –2), B(4, 3), C(2, 5) और D(–3, 0) इसी क्रम में एक आयत बनाते हैं।


x-अक्ष पर स्थित ऐसे बिंदु ज्ञात कीजिए, जो बिंदु (7, – 4) से `2sqrt(5)` की दूरी पर हैं। ऐसे कितने बिंदु हैं?


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×