Advertisements
Advertisements
Question
यदि बिंदु P(2, 1), Q(-1, 3), R(-5, -3) और S(-2, -5) हो तो सिद्ध कीजिए कि `square`PQRS एक आयत है।
Solution
मानो कि, P(2, 1) = (x1, y1); Q(-1, 3) = (x2, y2); R(-5, -3) = (x3, y3) और S(-2, -5) = (x4, y4).
दूरी सूत्र से,
PQ = `sqrt((x_2 - x_1)^2 + (y_2 - y_1)^2)`
= `sqrt((-1 - 2)^2 + (3 - 1)^2)`
= `sqrt((-3)^2 + (2)^2) = sqrt(9 + 4)`
= `sqrt13` ...................(1)
QR = `sqrt((x_3 - x_2)^2 + (y_3 - y_2)^2)`
= `sqrt([-5 - (-1)]^2 + (-3 - 3)^2)`
= `sqrt((-4)^2 + (-6)^2)`
= `sqrt(16 + 36) = sqrt52`
= `sqrt(2 xx 2 xx 13)`
= `2sqrt13` ..................(2)
RS = `sqrt((x_4 - x_3)^2 + (y_4 - y_3)^2)`
= `sqrt([-2 - (-5)]^2 + [-5 - (-3)]^2)`
= `sqrt((-2 + 5)^2 + (-5 + 3)^2)`
= `sqrt(3^2 + (-2)^2) = sqrt(9 + 4)`
= `sqrt13` .................(3)
PS = `sqrt((x_4 - x_1)^2 + (y_4 - y_1)^2)`
= `sqrt((-2 - 2)^2 + (-5 - 1)^2)`
= `sqrt((-4)^2 + (-6)^2)`
= `sqrt(16 + 36) = sqrt52 = sqrt(2 xx 2 xx 13)`
= `2sqrt13` ......................(4)
`square`PQRS में,
PQ = RS .........................[(1) और (3) से]
QR = PS ..........................[(2) और (4) से]
यदि किसी भी चतुर्भुज में सम्मुख भुजाओं की जोड़ियाँ परस्पर सर्वांगसम हों, तो वह समांतर चतुर्भुज होता है |
∴ `square`PQRS एक समांतर चतुर्भुज है |
दूरी सूत्र से,
PR = `sqrt((x_3 - x_1)^2 + (y_3 - y_1)^2)`
= `sqrt((-5 - 2)^2 + (-3 - 1)^2)`
= `sqrt((-7)^2 + (-4)^2) = sqrt(49 + 16)`
= `sqrt65` ........................(5)
QS = `sqrt((x_4 - x_2)^2 + (y_4 - y_2)^2)`
= `sqrt([-2 - (-1)]^2 + ((-5 - 3)^2)`
= `sqrt((-1)^2 + (-8)^2) = sqrt(1 + 64)`
= `sqrt65` .......................................(6)
समांतर चतुर्भुज PQRS में,
PR = QS ............................[(5) और (6) से]
यदि किसी समांतर चतुर्भुज के विकर्ण परस्पर सर्वांगसम हों, तो वह एक आयत है |
∴ `sqrt`PQRS एक आयत है |
APPEARS IN
RELATED QUESTIONS
नीचे दिए गए बिंदु एकरेखीय हैं या नहीं? इसकी जाँच कीजिए।
R(0, 3), D(2, 1), S(3, -1)
सिद्ध कीजिए कि, बिंदु P(1, −2), Q(5, 2), R(3, −1) और S(−1, −5) समांतर चतुर्भुज के शीर्षबिंदु हैं।
सिद्ध कीजिए, कि A(4, -1), B(6, 0), C(7, -2) और D(5, -3) वर्ग के शीर्ष बिंदु हैं।
शीर्ष बिंदु A(7, 1), B(3, 5) और C(2, 0) वाले त्रिभुज के परिवृत्त के केंद्र (परिकेंद्र) का निर्देशांक और त्रिज्या ज्ञात कीजिए।
बिंदुओं A(-4, -2), B(-3, -7) C(3, -2) और D(2, 3) को क्रम से जोड़ने पर बनने वाले `square`ABCD का प्रकार लिखिए।
निम्नलिखित बिंदुओं द्वारा बनने वाले चतुर्भुज का प्रकार (यदि कोई है तो) बताइए तथा अपने उत्तर के लिए कारण भी दीजिए:
(-3, 5), (3, 1), (0, 3), (-1, -4)
किसी वर्ग के दो सम्मुख शीर्ष (-1, 2) और (3, 2) हैं। वर्ग के अन्य दोनों शीर्ष ज्ञात कीजिए।
AOBC एक आयत है, जिसके तीन शीर्ष A(0, 3), O(0, 0) और B(5, 0) हैं। इसका विकर्ण ______ हैं।
यदि बिंदु P(2, 1), बिंदुओं A(4, 2) और B(8, 4) को मिलाने वाले रेखाखंड पर स्थित तो ______ है।
बिंदु P(–2, 4), त्रिज्या 6 और केंद्र C(3, 5) वाले वृत्त पर स्थित है।