Advertisements
Advertisements
प्रश्न
सिद्ध कीजिए कि, बिंदु P(1, −2), Q(5, 2), R(3, −1) और S(−1, −5) समांतर चतुर्भुज के शीर्षबिंदु हैं।
उत्तर
मानो कि, P(1, −2) = (x1, y1); Q(5, 2) = (x2, y2); R(3, −1) = (x3, y3) तथा S(−1, −5) = (x4, y4)।
दूरी सूत्र से,
PQ = `sqrt((x_2 - x_1)^2 + (y_2 - y_1)^2)`
= `sqrt((5 - 1)^2 + [2 - (-2)]^2)`
= `sqrt((4)^2 + (4)^2)`
= `sqrt(16 + 16)`
= `sqrt32`
= `sqrt(2 xx 2 xx 2 xx 2 xx 2)`
= `4sqrt2` ...(1)
QR = `sqrt((x_3 - x_2)^2 + (y_3 - y_2)^2)`
= `sqrt((3 - 5)^2 + (-1 - 2)^2)`
= `sqrt((-2)^2 + (-3)^2)`
= `sqrt(4 + 9)`
= `sqrt13` ...(2)
RS = `sqrt((x_4 - x_3)^2 + (y_4 - y_3)^2)`
= `sqrt((-1 - 3)^2 + [-5 - (-1)]^2)`
= `sqrt((-4)^2 + (-4)^2)`
= `sqrt(16 + 16)`
= `sqrt32`
= `sqrt(2 xx 2 xx 2 xx 2 xx 2)`
= `4sqrt2` ...(3)
PS = `sqrt((x_4 - x_1)^2 + (y_4 - y_1)^2)`
= `sqrt((-1 - 1)^2 + [-5 - (-2)]^2)`
= `sqrt((-2)^2 + (-5 + 2)^2)`
= `sqrt((-2)^2 + (-3)^2)`
= `sqrt(4 + 9)`
= `sqrt13` ...(4)
`square`PQRS में,
PQ = RS ....[(1) और (3) से]
QR = PS ...[(2) और (4) से]
`square` PQRS एक समांतर चतुर्भुज है। ...(यदि किसी चर्तुभुज में सम्मुख भुजाओं की जोड़ियाँ परस्पर सर्वांगसम हो, तो वह समांतर चर्तुभुज होता है।)
बिंदु P(1, −2), Q(5, 2), R(3, −1) और S(−1, −5) समांतर चतुर्भुज के शीर्षबिंदु है।
संबंधित प्रश्न
सिद्ध कीजिए कि, A(1, 2), B(1, 6), C(1 + `2sqrt3`, 4) समबाहु त्रिभुज के शीर्ष बिंदु हैं।
निम्नलिखित बिंदुओं को जोड़नेवाले रेखाखंड त्रिभुज बना सकते हैं क्या? यदि त्रिभुज बनता हो तो भुजाओं के आधार पर त्रिभुज का प्रकार लिखिए।
P(-2, -6), Q(-4, -2), R(-5, 0)
बिंदुओं के निम्नलिखित युग्मों के बीच की दूरी ज्ञात कीजिए:
(a, b), (-a, -b)
निर्धारित कीजिए कि क्या बिंदु (1, 5), (2, 3) और (-2, -11) संरेखी हैं।
जाँच कीजिए कि क्या बिंदु (5, -2), (6, 4) और (7,- 2) एक समद्विबाहु त्रिभुज के शीर्ष हैं।
निम्नलिखित बिंदुओं द्वारा बनने वाले चतुर्भुज का प्रकार (यदि कोई है तो) बताइए तथा अपने उत्तर के लिए कारण भी दीजिए:
(-1, -2,), (1, 0), (-1, 2), (-3, 0)
निम्नलिखित बिंदुओं द्वारा बनने वाले चतुर्भुज का प्रकार (यदि कोई है तो) बताइए तथा अपने उत्तर के लिए कारण भी दीजिए:
(4, 5), (7, 6), (4, 3), (1, 2)
x और y में एक ऐसा संबंध ज्ञात कीजिए कि बिंदु (x, y) बिंदुओं (3, 6) और (–3, 4) से समदूरस्थ हो।
बिंदु P(0, 2), बिंदुओं A(–1, 1 ) और B(3, 3) को मिलाने वाले रेखाखंड के लंब समद्विभाजक और y-अक्ष का प्रतिच्छेद बिंदु है।
x-अक्ष पर स्थित ऐसे बिंदु ज्ञात कीजिए, जो बिंदु (7, – 4) से `2sqrt(5)` की दूरी पर हैं। ऐसे कितने बिंदु हैं?