Advertisements
Advertisements
प्रश्न
बिंदु A(2, 7), बिंदुओं P(6, 5) और Q(0, – 4) को मिलाने वाले रेखाखंड के लंब समद्विभाजक पर स्थित है।
पर्याय
सत्य
असत्य
उत्तर १
यह कथन असत्य है।
स्पष्टीकरण:
यदि A(2, 7) P(6, 5) और Q(0, – 4) के लंबवत समद्विभाजक पर स्थित है,
तब AP = AQ
∴ AP = `sqrt((6 - 2)^2 + (5 - 7)^2`
= `sqrt((4)^2 + (-2)^2`
= `sqrt(16 + 4)`
= `sqrt(20)`
और A = `sqrt((0 - 2)^2 + (-4 - 7)^2`
= `sqrt((-2)^2 + (-11)^2`
= `sqrt(4 + 121)`
= `sqrt(125)`
अतः, A, PQ के लंब समद्विभाजक पर स्थित नहीं है।
उत्तर २
यह कथन असत्य है।
स्पष्टीकरण:
यदि बिंदु A(2, 7) रेखा खंड के लंबवत समद्विभाजक पर स्थित है, तो बिंदु A लंबवत समद्विभाजक के समीकरण को संतुष्ट करता है।
अब, हम लंब समद्विभाजक का समीकरण ज्ञात करते हैं।
इसके लिए हम लंब समद्विभाजक का ढलान ज्ञात करते हैं।
∴ लम्ब समद्विभाजक का ढलान = `(-1)/("बिंदुओं को जोड़ने वाले रेखाखंड का ढलान" (5, -3) "और" (0, -4))`
= `(-1)/((-4 - (-3))/(0 - 5))` ...`[∵ "ढलान" = (y_2 - y_1)/(x_2 - x_1)]`
= 5
[चूंकि, लंब समद्विभाजक रेखा खंड पर लंबवत है, इसलिए इसकी ढलान की स्थिति है, m1 · m2 = – 1]
चूंकि, लंब समद्विभाजक बिंदुओं (5, – 3) और (0, – 4) को मिलाने वाले रेखाखंड के मध्य-बिंदु से होकर गुजरता है।
∴ PQ का मध्य-बिंदु = `((5 + 0)/2, (-3 - 4)/2) = (5/2, (-7)/2)`
तो, लम्ब समद्विभाजक का समीकरण जिसका ढलान `1/3` है और मध्य-बिंदु `(5/2, (-7)/2)` से होकर गुजरता है।
`(y + 7/2) = 5(x - 5/2)` ...[∵ रेखा का समीकरण है (y – y1) = m(x – x1]
⇒ 2y + 7 = 10x – 25
⇒ 10x – 2y – 32 = 0
⇒ 10x – 2y = 32
⇒ 5x – y = 16 ...(i)
अब, जांचें कि बिंदु A(2, 7) समीकरण (i) पर स्थित है या नहीं।
5 × 2 – 7
= 10 – 7
= 3 ≠ 16
अत:, बिंदु A(2, 7) रेखा खंड के लंब समद्विभाजक पर स्थित नहीं है।
APPEARS IN
संबंधित प्रश्न
सिद्ध कीजिए कि, A(-4, -7), B(-1, 2), C(8, 5) और D(5, -4) समचतुर्भुज ABCD के शीर्ष बिंदु हैं।
निम्नलिखित बिंदुओं को जोड़नेवाले रेखाखंड त्रिभुज बना सकते हैं क्या? यदि त्रिभुज बनता हो तो भुजाओं के आधार पर त्रिभुज का प्रकार लिखिए।
L(6, 4), M(-5, -3), N(-6, 8)
बिंदुओं के निम्नलिखित युग्मों के बीच की दूरी ज्ञात कीजिए:
(a, b), (-a, -b)
बिंदुओं (0,0) और (36, 15) के बीच की दूरी ज्ञात कीजिए। क्या अब आप अनुच्छेद 7.2 में दिए दोनों शहरों A और B के बीच की दूरी ज्ञात कर सकते हैं?
निर्धारित कीजिए कि क्या बिंदु (1, 5), (2, 3) और (-2, -11) संरेखी हैं।
x और y में एक ऐसा संबंध ज्ञात कीजिए कि बिंदु (x, y) बिंदुओं (3, 6) और (–3, 4) से समदूरस्थ हो।
बिंदु P(0, 2), बिंदुओं A(–1, 1 ) और B(3, 3) को मिलाने वाले रेखाखंड के लंब समद्विभाजक और y-अक्ष का प्रतिच्छेद बिंदु है।
x-अक्ष पर स्थित ऐसे बिंदु ज्ञात कीजिए, जो बिंदु (7, – 4) से `2sqrt(5)` की दूरी पर हैं। ऐसे कितने बिंदु हैं?
बिंदुओं A(2, –2), B(7, 3), C(11, –1) और D(6, –6) को इसी क्रम में लेने पर किस प्रकार का चतुर्भुज बनता है?
यदि बिंदु A(2, – 4), बिंदुओं P(3, 8) और Q(–10, y) से समदूरस्थ है, तो y के मान ज्ञात कीजिए। दूरी PQ भी ज्ञात कीजिए।