Advertisements
Advertisements
प्रश्न
बिंदुओं A(2, –2), B(7, 3), C(11, –1) और D(6, –6) को इसी क्रम में लेने पर किस प्रकार का चतुर्भुज बनता है?
उत्तर
बिंदु A(2, –2), B(7, 3), C(11, –1) और D(6, –6) हैं।
दूरी सूत्र का प्रयोग करके,
d = `sqrt((x_2 - x_1)^2 + (y_2 - y_1)^2`
AB = `sqrt((7 - 2)^2 + (3 + 2)^2`
= `sqrt((5)^2 + (5)^2`
= `sqrt(25 + 25)`
= `sqrt(50)`
= 5`sqrt(2)`
BC = `sqrt((11 - 7)^2 + (-1 - 3)^2`
= `sqrt((4)^2 + (-4)^2`
= `sqrt(16 + 16)`
= `sqrt(32)`
= `4sqrt(2)`
CD = `sqrt((6 - 11)^2 + (-6 + 1)^2`
= `sqrt((-5)^2 + (-5)^2`
= `sqrt(25 + 25)`
= `sqrt(50)`
= `5sqrt(2)`
DA = `sqrt((2 - 6)^2 + (-2 + 6)^2`
= `sqrt((-4)^2 + (4)^2`
= `sqrt(16 + 16)`
= `sqrt(32)`
= `4sqrt(2)`
विकर्ण AC तथा BD ज्ञात करने पर, हमें प्राप्त होता है,
AC = `sqrt((11 - 2)^2 + (-1 + 2)^2`
= `sqrt((9)^2 + (1)^2`
= `sqrt(81 + 1)`
= `sqrt(82)`
और BD = `sqrt((6 - 7)^2 + (-6 - 3)^2`
= `sqrt((-1)^2 + (-9)^2`
= `sqrt(1 + 81)`
= `sqrt(82)`
APPEARS IN
संबंधित प्रश्न
सिद्ध कीजिए कि, A(-4, -7), B(-1, 2), C(8, 5) और D(5, -4) समचतुर्भुज ABCD के शीर्ष बिंदु हैं।
y का वह मान ज्ञात कीजिए, जिसके लिए बिंदु P(2, -3) और Q(10, y) के बीच की दूरी 10 मात्रक है।
निम्नलिखित बिंदुओं द्वारा बनने वाले चतुर्भुज का प्रकार (यदि कोई है तो) बताइए तथा अपने उत्तर के लिए कारण भी दीजिए:
(4, 5), (7, 6), (4, 3), (1, 2)
x-अक्ष पर वह बिंदु ज्ञात कीजिए जो (2, -5) और (-2, 9) से समदूरस्थ हैं।
बिंदुओं A(0, 6) और B(0, –2) के बीच की दूरी ______ है।
यदि बिंदु P(2, 1), बिंदुओं A(4, 2) और B(8, 4) को मिलाने वाले रेखाखंड पर स्थित तो ______ है।
यदि बिंदुओं Q(– 6, 5) और R(– 2, 3) को मिलाने वाले रेखाखंड का मध्य-बिंदु `P (a/3, 4)` है, तो a का मान ______ है।
बिंदु P(–2, 4), त्रिज्या 6 और केंद्र C(3, 5) वाले वृत्त पर स्थित है।
बिंदु A(–1, –2), B(4, 3), C(2, 5) और D(–3, 0) इसी क्रम में एक आयत बनाते हैं।
यदि (a, b), बिंदुओं A(10, –6) और B(k, 4) को मिलाने वाले रेखाखंड का मध्य-बिंदु है तथा a – 2b = 18 है, तो k का मान और दूरी AB ज्ञात कीजिए।