हिंदी

बिंदुओं A(2, –2), B(7, 3), C(11, –1) और D(6, –6) को इसी क्रम में लेने पर किस प्रकार का चतुर्भुज बनता है? - Mathematics (गणित)

Advertisements
Advertisements

प्रश्न

बिंदुओं A(2, –2), B(7, 3), C(11, –1) और D(6, –6) को इसी क्रम में लेने पर किस प्रकार का चतुर्भुज बनता है?

योग

उत्तर

बिंदु A(2, –2), B(7, 3), C(11, –1) और D(6, –6) हैं।


दूरी सूत्र का प्रयोग करके,

d = `sqrt((x_2 - x_1)^2 + (y_2 - y_1)^2`

AB = `sqrt((7 - 2)^2 + (3 + 2)^2`

= `sqrt((5)^2 + (5)^2`

= `sqrt(25 + 25)`

= `sqrt(50)`

= 5`sqrt(2)`

BC = `sqrt((11 - 7)^2 + (-1 - 3)^2`

= `sqrt((4)^2 + (-4)^2`

= `sqrt(16 + 16)`

= `sqrt(32)`

= `4sqrt(2)`

CD = `sqrt((6 - 11)^2 + (-6 + 1)^2`

= `sqrt((-5)^2 + (-5)^2`

= `sqrt(25 + 25)`

= `sqrt(50)`

= `5sqrt(2)`

DA = `sqrt((2 - 6)^2 + (-2 + 6)^2`

= `sqrt((-4)^2 + (4)^2`

= `sqrt(16 + 16)`

= `sqrt(32)`

= `4sqrt(2)`

विकर्ण AC तथा BD ज्ञात करने पर, हमें प्राप्त होता है,

AC = `sqrt((11 - 2)^2 + (-1 + 2)^2`

= `sqrt((9)^2 + (1)^2`

= `sqrt(81 + 1)`

= `sqrt(82)`

और BD = `sqrt((6 - 7)^2 + (-6 - 3)^2`

= `sqrt((-1)^2 + (-9)^2`

= `sqrt(1 + 81)`

= `sqrt(82)`

निर्मित चतुर्भुज आयत है।
shaalaa.com
दूरी सूत्र
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 7: निर्देशांक ज्यामिति - प्रश्नावली 7.3 [पृष्ठ ८५]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [Hindi] Class 10
अध्याय 7 निर्देशांक ज्यामिति
प्रश्नावली 7.3 | Q 3. | पृष्ठ ८५

संबंधित प्रश्न

सिद्ध कीजिए कि, A(-4, -7), B(-1, 2), C(8, 5) और D(5, -4) समचतुर्भुज ABCD के शीर्ष बिंदु हैं।


किसी त्रिभुज के शीर्षबिंदु A(-3,1), B(0,-2) और C(1,3) हों तो इस त्रिभुज के परिकेंद्र के निर्देशांक ज्ञात कीजिए।


निम्नलिखित बिंदुओं को जोड़नेवाले रेखाखंड त्रिभुज बना सकते हैं क्या? यदि त्रिभुज बनता हो तो भुजाओं के आधार पर त्रिभुज का प्रकार लिखिए।

P(-2, -6), Q(-4, -2), R(-5, 0)


बिंदुओं A(-4, -2), B(-3, -7) C(3, -2) और D(2, 3) को क्रम से जोड़ने पर बनने वाले `square`ABCD का प्रकार लिखिए।


x और y में एक ऐसा संबंध ज्ञात कीजिए कि बिंदु (x, y) बिंदुओं (3, 6) और (–3, 4) से समदूरस्थ हो।


बिंदुओं (6, -6), (3, -7) और (3, 3) से होकर जाने वाले वृत्त का केंद्र ज्ञात कीजिए।


यदि बिंदु P(2, 1), बिंदुओं A(4, 2) और B(8, 4) को मिलाने वाले रेखाखंड पर स्थित तो ______  है।


बिंदु A(2, 7), बिंदुओं P(6, 5) और Q(0, – 4) को मिलाने वाले रेखाखंड के लंब समद्विभाजक पर स्थित है।


बिंदु P(–2, 4), त्रिज्या 6 और केंद्र C(3, 5) वाले वृत्त पर स्थित है।


x-अक्ष पर स्थित ऐसे बिंदु ज्ञात कीजिए, जो बिंदु (7, – 4) से `2sqrt(5)` की दूरी पर हैं। ऐसे कितने बिंदु हैं?


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×