English

बिंदु A(2, 7), बिंदुओं P(6, 5) और Q(0, – 4) को मिलाने वाले रेखाखंड के लंब समद्विभाजक पर स्थित है। - Mathematics (गणित)

Advertisements
Advertisements

Question

बिंदु A(2, 7), बिंदुओं P(6, 5) और Q(0, – 4) को मिलाने वाले रेखाखंड के लंब समद्विभाजक पर स्थित है।

Options

  • सत्य

  • असत्य

MCQ
True or False

Solution 1

यह कथन असत्य है।

स्पष्टीकरण:

यदि A(2, 7) P(6, 5) और Q(0, – 4) के लंबवत समद्विभाजक पर स्थित है,

तब AP = AQ

∴ AP = `sqrt((6 - 2)^2 + (5 - 7)^2`

= `sqrt((4)^2 + (-2)^2`

= `sqrt(16 + 4)`

= `sqrt(20)`

और A = `sqrt((0 - 2)^2 + (-4 - 7)^2`

= `sqrt((-2)^2 + (-11)^2`

= `sqrt(4 + 121)`

= `sqrt(125)`

अतः, A, PQ के लंब समद्विभाजक पर स्थित नहीं है।

shaalaa.com

Solution 2

यह कथन असत्य है।

स्पष्टीकरण:

यदि बिंदु A(2, 7) रेखा खंड के लंबवत समद्विभाजक पर स्थित है, तो बिंदु A लंबवत समद्विभाजक के समीकरण को संतुष्ट करता है।

अब, हम लंब समद्विभाजक का समीकरण ज्ञात करते हैं।

इसके लिए हम लंब समद्विभाजक का ढलान ज्ञात करते हैं।

∴ लम्ब समद्विभाजक का ढलान = `(-1)/("बिंदुओं को जोड़ने वाले रेखाखंड का ढलान"  (5, -3)  "और"  (0, -4))`

= `(-1)/((-4 - (-3))/(0 - 5))`  ...`[∵ "ढलान"  = (y_2 - y_1)/(x_2 - x_1)]`

= 5   

[चूंकि, लंब समद्विभाजक रेखा खंड पर लंबवत है, इसलिए इसकी ढलान की स्थिति है, m1 · m2 = – 1]

चूंकि, लंब समद्विभाजक बिंदुओं (5, – 3) और (0, – 4) को मिलाने वाले रेखाखंड के मध्य-बिंदु से होकर गुजरता है।

∴ PQ का मध्य-बिंदु = `((5 + 0)/2, (-3 - 4)/2) = (5/2, (-7)/2)`

तो, लम्ब समद्विभाजक का समीकरण जिसका ढलान `1/3` है और मध्य-बिंदु `(5/2, (-7)/2)` से होकर गुजरता है।

`(y + 7/2) = 5(x - 5/2)`   ...[∵ रेखा का समीकरण है (y – y1) = m(x – x1]

⇒ 2y + 7 = 10x – 25

⇒ 10x – 2y – 32 = 0

⇒ 10x – 2y = 32

⇒ 5x – y = 16   ...(i)

अब, जांचें कि बिंदु A(2, 7) समीकरण (i) पर स्थित है या नहीं।

5 × 2 – 7

= 10 – 7

= 3 ≠ 16

अत:, बिंदु A(2, 7) रेखा खंड के लंब समद्विभाजक पर स्थित नहीं है।

shaalaa.com
दूरी सूत्र
  Is there an error in this question or solution?
Chapter 7: निर्देशांक ज्यामिति - प्रश्नावली 7.2 [Page 83]

APPEARS IN

NCERT Exemplar Mathematics [Hindi] Class 10
Chapter 7 निर्देशांक ज्यामिति
प्रश्नावली 7.2 | Q 8. | Page 83

RELATED QUESTIONS

निम्नलिखित बिंदुओं को जोड़नेवाले रेखाखंड त्रिभुज बना सकते हैं क्या? यदि त्रिभुज बनता हो तो भुजाओं के आधार पर त्रिभुज का प्रकार लिखिए।

P(-2, -6), Q(-4, -2), R(-5, 0)


निम्नलिखित बिंदुओं को जोड़नेवाले रेखाखंड त्रिभुज बना सकते हैं क्या? यदि त्रिभुज बनता हो तो भुजाओं के आधार पर त्रिभुज का प्रकार लिखिए।

A(`sqrt2, sqrt2`), B(`-sqrt2 , -sqrt2`), C(`-sqrt6 , sqrt6`)


सिद्ध कीजिए, कि A(4, -1), B(6, 0), C(7, -2) और D(5, -3) वर्ग के शीर्ष बिंदु हैं।


बिंदुओं के निम्नलिखित युग्मों के बीच की दूरी ज्ञात कीजिए:

(-5, 7), (-1, 3)


बिंदुओं A(0, 6) और B(0, –2) के बीच की दूरी ______ है।


यदि बिंदुओं Q(– 6, 5) और R(– 2, 3) को मिलाने वाले रेखाखंड का मध्य-बिंदु `P (a/3, 4)` है, तो a का मान ______ है।


बिंदुओं A(1, 5) और B(4, 6) को मिलाने वाले रेखाखंड का लंब समद्वि भाजक y-अक्ष को निम्नलिखित बिंदु पर काटता ______ हैं।


आकृति में दर्शाए गए त्रिभुज AOB के तीनों शीर्षो से समदूरस्थ बिंदु के निर्देशांक ______ हैं।


यदि (a, b), बिंदुओं A(10, –6) और B(k, 4) को मिलाने वाले रेखाखंड का मध्य-बिंदु है तथा a – 2b = 18 है, तो k का मान और दूरी AB ज्ञात कीजिए।


बिन्दु O(0, 0) तथा P(3, 4) के बीच की दूरी ज्ञात कीजिए।


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×