हिंदी

बिंदु A(2, 9), B(a, 5) और C(5, 5) एक त्रिभुज ABC के शीर्ष हैं, जिसका∠B समकोण है। a के मान ज्ञात कीजिए और फिर ΔABC का क्षेत्रफल ज्ञात कीजिए। - Mathematics (गणित)

Advertisements
Advertisements

प्रश्न

बिंदु A(2, 9), B(a, 5) और C(5, 5) एक त्रिभुज ABC के शीर्ष हैं, जिसका∠B समकोण है। a के मान ज्ञात कीजिए और फिर ΔABC का क्षेत्रफल ज्ञात कीजिए।

योग

उत्तर

दिया गया है कि, बिंदु A(2, 9), B(a, 5) और C(5, 5) B पर समकोण ΔABC के शीर्ष हैं।

पाइथागोरस प्रमेय द्वारा,

AC2 = AB2 + BC2 

अब, दूरी सूत्र द्वारा,

AB = `sqrt((a - 2)^2 + (5 - 9)^2)`  ...(i) `[∵ "दो बिंदुओं के बीच की दूरी"  (x_1, y_1)  "और"  (x_2, y_2) = sqrt((x_2 - x_1)^2 + (y_2 - y_1)^2)]`

= `sqrt(a^2 + 4 - 4a + 16)`

= `sqrt(a^2 - 4a + 20)`

BC = `sqrt((5 - a)^2 + (5 - 5)^2`

= `sqrt((5 - a)^2 + 0)`

= 5 – a

और AC = `sqrt((2 - 5)^2 + (9 - 5)^2`

= `sqrt((-3)^2 + (4)^2`

= `sqrt(9 + 16)`

= `sqrt(25)`

= 5

AB, BC और AC का मान समीकरण (i) में रखने पर, हमें प्राप्त होता है। 

(5)2 = `(sqrt(a^2 - 4a + 20))^2 + (5 - a)^2`

⇒ 25 = a2 – 4a + 20 + 25 + a2 – 10a

⇒ 2a2 – 14a + 20 = 0

⇒ a2 – 7a + 10 = 0

⇒ a2 – 2a – 5a + 10 = 0  ...[गुणनखंडन विधि द्वारा]

⇒ a(a – 2) – 5(a – 2) = 0

⇒ (a – 2)(a – 5) = 0

∴ a = 2, 5

यहाँ, a ≠ 5, चूँकि a = 5 पर, BC की लंबाई = 0 है।

यह संभव नहीं है क्योंकि भुजाएँ AB, BC और CA एक समकोण त्रिभुज बनाती हैं।

तो, a = 2

अब, A, B और C का निर्देशांक क्रमशः (2, 9), (2, 5) और (5, 5) हो जाता है।

∵ ΔABC का क्षेत्रफल = `1/2[x_1(y_2 - y_3) + x_2(y_3 - y_1) + x_3(y_1 - y_2)]`

∴ Δ = `1/2[2(5 - 5) + 2(5 - 9) + 5(9 - 5)]`

= `1/2[2 xx 0 + 2(-4) + 5(4)]`

= `1/2(0 - 8 + 20)`

= `1/2 xx 12`

= 6

अतः, △ABC का अभीष्ट क्षेत्रफल 6 वर्ग इकाई है।

shaalaa.com
त्रिभुज का क्षेत्रफल
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 7: निर्देशांक ज्यामिति - प्रश्नावली 7.3 [पृष्ठ ८६]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [Hindi] Class 10
अध्याय 7 निर्देशांक ज्यामिति
प्रश्नावली 7.3 | Q 17. | पृष्ठ ८६

संबंधित प्रश्न

निम्नलिखित में से प्रत्येक में 'k' का मान ज्ञात कीजिए, ताकि तीनों बिंदु संरेखी हों:

(8, 1), (k, -4), (2, -5)


x और y में एक संबंध ज्ञात कीजिए, यदि बिंदु (x, y), (1, 2) और (7, 0) संरेखी हैं।


बिंदुओं A(-1, -1), B(-1, 4), C(5, 4) और D(5, -1) से एक आयत ABCD बनता है। P, Q, R और S क्रमशः भुजाओं AB, BC, CD और DA के मध्य-बिंदु हैं। क्या चतुर्भुज PQRS एक वर्ग है? क्या यह एक आयत है? क्या यह एक समचतुर्भुज है? सकारण उत्तर दीजिए।


शीर्षों A(3, 0), B(7, 0) और C(8, 4) वाले त्रिभुज का क्षेत्रफल ______ है।


यदि बिंदु A(1, 2), O(0, 0) और C(a, b) संरेख हैं, तो ______।


उस त्रिभुज का क्षेत्रफल ज्ञात कीजिए जिसके शीर्ष (–8, 4), (–6, 6) और (–3, 9) हैं।


k के मान ज्ञात कीजिए, यदि बिंदु A(k + 1, 2k), B(3k, 2k + 3) और C(5k – 1, 5k) संरेख हैं।


एक समद्विबाहु समकोण त्रिभुज का क्षेत्रफल 8 cm2 है। इसके कर्ण की लंबाई है।


आधार 4 cm और ऊँचाई 6 cm वाले त्रिभुज का क्षेत्रफल 24 cm2 है। 


एक त्रिभुज का परिमाप 50 cm है। त्रिभुज की एक भुजा छोटी भुजा से 4 cm लंबी है तथा तीसरी भुजा छोटी भुजा के दुगुने से 6 cm कम है। त्रिभुज का क्षेत्रफल ज्ञात कीजिए।


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×