Advertisements
Advertisements
प्रश्न
k के मान ज्ञात कीजिए, यदि बिंदु A(k + 1, 2k), B(3k, 2k + 3) और C(5k – 1, 5k) संरेख हैं।
उत्तर
हम जानते हैं कि, यदि तीन बिन्दु संरेखी हों, तो इन बिन्दुओं से बने त्रिभुज का क्षेत्रफल शून्य होता है।
चूँकि, बिंदु A(k + 1, 2k), B(3k, 2k + 3) और C(5k – 1, 5k) संरेखी हैं।
फिर, ΔABC का क्षेत्रफल = 0
⇒ `1/2[x_1(y_2 - y_3) + x_2(y_3 - y_1) + x_3(y_1 - y_2)]` = 0
यहाँ, x1 = k + 1, x2 = 3k, x3 = 5k – 1 and y1 = 2k1, y2 = 2k + 3, y3 = 5k
⇒ `1/2[(k + 1)(2k + 3 - 5k) + 3k(5k - 2k) + (5k - 1)(2k - (2k
+ 3))]` = 0
⇒ `1/2[(k + 1)(-3k + 3) + 3k(3k) + (5k - 1)(2k - 2k - 3)]` = 0
⇒ `1/2[-3k^2 + 3k - 3k + 3 + 9k^2 - 15k + 3]` = 0
⇒ `1/2(6k^2 - 15k + 6)` = 0 ...[2 से गुणा करें]
⇒ 6k2 – 15k + 6 = 0 ...[गुणनखंडन विधि द्वारा]
⇒ 2k2 – 5k + 2 = 0 ...[3 से विभाजित करें]
⇒ 2k2 – 4k – k + 2 = 0
⇒ 2k(k – 2) – 1(k – 2) = 0
⇒ (k – 2)(2k – 1) = 0
यदि k – 2 = 0, तो k = 2
यदि 2k – 1 = 0, तो k = `1/2`
∴ k = `2, 1/2`
अतः, k के अभीष्ट मान 2 और `1/2` हैं।
APPEARS IN
संबंधित प्रश्न
निम्नलिखित में से प्रत्येक में 'k' का मान ज्ञात कीजिए, ताकि तीनों बिंदु संरेखी हों:
(7, -2), (5, 1), (3, k)
शीर्षों (0, -1), (2, 1) और (0, 3) वाले त्रिभुज की भुजाओं के मध्य-बिंदुओं से बनने वाले त्रिभुज का क्षेत्रफल ज्ञात कीजिए। इस क्षेत्रफल का दिए हुए त्रिभुज के क्षेत्रफल के साथ अनुपात ज्ञात कीजिए।
किसी त्रिभुज की एक माध्यिका उसे बराबर क्षेत्रफलों वाले दो त्रिभुजों में विभाजित करती है। उस त्रिभुज ABC के लिए इस परिणाम का सत्यापन कीजिए जिसके शीर्ष A(4, -6), B(3, -2) और C(5, 2) हैं।
कृष्णानगर के एक सेकेंडरी स्कूल के कक्षा X के विद्यार्थियों को उनके बागवानी क्रियाकलाप के लिए, एक आयताकार भूखंड दिया गया है। गुलमोहर की पौध (sapling) को परस्पर 1m की दूरी पर इस भूखंड की परिसीमा (boundary) पर लगाया जाता है। इस भूखंड के अंदर एक त्रिभुजाकार घास लगा हुआ लॉन (lawn) है, जैसाकि आकृति में दर्शाया गया है। विद्यार्थियों को भूखंड के शेष भाग में है फूलों के पौधे के बीज बोने हैं।
(i) A को मूलबिंदु मानते हए, त्रिभुज के शीषों के निर्देशांक ज्ञात कीजिए।
(ii) यदि मूलबिंदु C हो, तो ∆PQR के शीर्षों के निर्देशांक क्या होंगे?
साथ ही, उपरोक्त दोनों स्थितियों में, त्रिभुजों के क्षेत्रफल ज्ञात कीजिए। आप क्या देखते हैं?
बिंदुओं A(-1, -1), B(-1, 4), C(5, 4) और D(5, -1) से एक आयत ABCD बनता है। P, Q, R और S क्रमशः भुजाओं AB, BC, CD और DA के मध्य-बिंदु हैं। क्या चतुर्भुज PQRS एक वर्ग है? क्या यह एक आयत है? क्या यह एक समचतुर्भुज है? सकारण उत्तर दीजिए।
शीर्षों A(3, 0), B(7, 0) और C(8, 4) वाले त्रिभुज का क्षेत्रफल ______ है।
यदि बिंदु A(1, 2), O(0, 0) और C(a, b) संरेख हैं, तो ______।
बिंदु A(2, 9), B(a, 5) और C(5, 5) एक त्रिभुज ABC के शीर्ष हैं, जिसका∠B समकोण है। a के मान ज्ञात कीजिए और फिर ΔABC का क्षेत्रफल ज्ञात कीजिए।
आधार 4 cm और ऊँचाई 6 cm वाले त्रिभुज का क्षेत्रफल 24 cm2 है।
एक त्रिभुज का परिमाप 50 cm है। त्रिभुज की एक भुजा छोटी भुजा से 4 cm लंबी है तथा तीसरी भुजा छोटी भुजा के दुगुने से 6 cm कम है। त्रिभुज का क्षेत्रफल ज्ञात कीजिए।