Advertisements
Advertisements
प्रश्न
उस चतुर्भुज का क्षेत्रफल ज्ञात कीजिए जिसके शीर्ष इसी क्रम में, (-4, -2), (-3, -5), (3, -2) और (2, 3) हैं।
उत्तर
मान लीजिए चतुर्भुज ABCD के शीर्ष क्रमशः A(-4, -2), B(-3, -5), C(3, -2) और D(2, 3)
क्षेत्र. (ABC) = `1/2` [-4 (-5 + 2) + (-3) (-2 + 2) + 3 (-2 + 5)]
क्षेत्र. (ABC) = `1/2` [-4 (-3) - 3 (0) + 3 (3)]
= `1/2` [12 - 0 + 9]
= `21/2` वर्ग मात्रक
क्षेत्र. (ADC) = `1/2` [-4 (-2 - 3) + 3 (3 + 2) + 2 (-2 + 2)]
क्षेत्र. (ADC) = `1/2` [-4 (-5) + 3 (5) + 2 x 0]
= `1/2` [20 + 15 + 0]
= `35/2` वर्ग इकाई
क्षेत्रफल (ABCD) = क्षेत्रफल (ABC) + क्षेत्रफल (ADC)
क्षेत्रफल (ABCD) = `21/2 + 35/2 = 56/2`
= 28 वर्ग मात्रक
अतः, दिए हुए चतुर्भुज का अभीष्ट क्षेत्रफल = 28 वर्ग मात्रक
APPEARS IN
संबंधित प्रश्न
x और y में एक संबंध ज्ञात कीजिए, यदि बिंदु (x, y), (1, 2) और (7, 0) संरेखी हैं।
एक त्रिभुज ABC के शीर्ष A(4, 6), B(1, 5) और C(7, 2) हैं। भुजाओं AB और AC को क्रमश: D और E पर प्रतिच्छेद करते हुए एक रेखा इस प्रकार खींची गई है कि `"AD"/"AB" = "AE"/"AC" = 1/4` है। ∆ADE का क्षेत्रफल परिकलित कीजिए और इसकी तुलना ∆ABC के क्षेत्रफल से कीजिए।
(प्रमेय 6.2 और प्रमेय 6.6 का स्मरण कीजिए।)
शीर्षों (a, b + c), (b, c + a) और (c, a + b) वाले त्रिभुज का क्षेत्रफल ______ हैं।
यदि बिंदु A(1, 2), O(0, 0) और C(a, b) संरेख हैं, तो ______।
बिंदु A(3, 1), B(12, –2) और C(0, 2) एक त्रिभुज के शीर्ष नहीं हो सकते।
बिंदु A(–6, 10), B(–4, 6) और C(3, –8) इस प्रकार संरेख हैं कि AB = `2/9`AC है।
m का मान ज्ञात कीजिए, यदि (5, 1), (–2, –3) और (8, 2m) संरेख हैं।
बिंदु A(2, 9), B(a, 5) और C(5, 5) एक त्रिभुज ABC के शीर्ष हैं, जिसका∠B समकोण है। a के मान ज्ञात कीजिए और फिर ΔABC का क्षेत्रफल ज्ञात कीजिए।
A(6, 1), B(8, 2) और C(9, 4) एक समांतर चतुर्भुज ABCD के तीन शीर्ष हैं। यदि E भुजा DC का मध्य-बिंदु है, तो ΔADE का क्षेत्रफल ज्ञात कीजिए।
आधार 4 cm और ऊँचाई 6 cm वाले त्रिभुज का क्षेत्रफल 24 cm2 है।