Advertisements
Advertisements
Question
बिंदुओं (6, -6), (3, -7) और (3, 3) से होकर जाने वाले वृत्त का केंद्र ज्ञात कीजिए।
Solution
मान लीजिए दिए हुए बिन्दुओं A(6, -6), B(3, -7) और C(3, 3) से होकर जाने वाले वृत्त का केन्द्र O(x, y) है तो OA = OB = OC वृत्त की त्रिज्याएँ हैं।
⇒ `sqrt((x - 6)^2 + (y + 6)^2) = sqrt((x - 3)^2 + (y + 7)^2) = sqrt((x - 3)^2 + (y - 3)^2)`
⇒ (x - 6)2 + (y + 6)2 = (x - 3)2 + (y + 7)2 = (x - 3)2 + (y - 3)2
(दोनों ओर वर्ग करने पर)
⇒ (x - 6)2 + (y + 6)2 = (x - 3)2 + (y + 7)2 (OA = OB से)
⇒ x2 - 12x + 36 + y2 + 12y + 36 = x2 - 6x + 9 + y2 + 14y + 49
⇒ – 12x + 6x + 12y - 14y + 72 - 58 = 0
⇒ – 6x - 2y + 14 = 0
⇒ 3x + y = 7 ….(1)
⇒ (x - 3)2 + (y + 7)2 = (x - 3)2 + (y - 3)2 (OB = OC से)
⇒ x2 - 6x + 9 + y2 + 14y + 49 = x2 - 6x + 9 + y2 - 6y + 9
⇒ -6x + 6x + 14y + 6y = 18 - 58
⇒ 20y = -40
⇒ y = `(-40)/20 = -2` …..(2)
समीकरण (2) से y = -2 का मान समीकरण (1) में रखने पर,
⇒ 3x - 2 = 7
⇒ 3x = 7 + 2
⇒ 3x = 9
⇒ x = `9/3` = 3
अतः वृत्त के केन्द्र के अभीष्ट निर्देशांक (3, -2) हैं।
APPEARS IN
RELATED QUESTIONS
नीचे दिए गए बिंदु एकरेखीय हैं या नहीं? इसकी जाँच कीजिए।
R(0, 3), D(2, 1), S(3, -1)
जाँच कीजिए कि बिंदु P(-2, 2), Q(2, 2) और R(2, 7) समकोण त्रिभुज के शीर्षबिंदु हैं।
बिंदुओं A(-4, -2), B(-3, -7) C(3, -2) और D(2, 3) को क्रम से जोड़ने पर बनने वाले `square`ABCD का प्रकार लिखिए।
बिंदुओं के निम्नलिखित युग्मों के बीच की दूरी ज्ञात कीजिए:
(a, b), (-a, -b)
x और y में एक ऐसा संबंध ज्ञात कीजिए कि बिंदु (x, y) बिंदुओं (3, 6) और (–3, 4) से समदूरस्थ हो।
किसी वर्ग के दो सम्मुख शीर्ष (-1, 2) और (3, 2) हैं। वर्ग के अन्य दोनों शीर्ष ज्ञात कीजिए।
बिंदुओं (0, 5) और (–5, 0) के बीच की दूरी ______ है।
एक वृत्त का केंद्र मूलबिंदु पर है तथा एक बिंदु P(5, 0) इस वृत्त पर स्थित है। बिंदु Q(6, 8) इस वृत्त के बाहर स्थित है।
बिंदु A(–1, –2), B(4, 3), C(2, 5) और D(–3, 0) इसी क्रम में एक आयत बनाते हैं।
यदि बिंदु A(2, – 4), बिंदुओं P(3, 8) और Q(–10, y) से समदूरस्थ है, तो y के मान ज्ञात कीजिए। दूरी PQ भी ज्ञात कीजिए।