Advertisements
Advertisements
Question
Show that the points A (-7 , 4 , -2),B (-2 , 1 , 0)and C (3 ,-2 ,2) are collinear.
Solution
Let `bar "a" , bar "b" , & bar"c"` be position vectors of A,B &C
`bar"AB" = bar"b" -bar"a"`
= `(-2hat"i" +hat"j") -(-7hat"i" +4 hat"j" - 2hat"k")`
=`5hat "i" -3 hat"j" +2hat"k"`
`bar"AC" = bar"c" -bar"a"`
= `(3 hat"i" - 2 hat"j" +2 hat"k") - (-7hat"i" +4 hat"j" -2hat"k")`
=`10 hat"i" -6 hat"j" +4 hat"k"`
= `2 [5hat"i" -3 hat"j" +2hat"k"]`
`=> bar"AC" = 2 bar(("AB"))`
`=> bar "AC" "is a scalar multiple of "bar "AB"`
`=> bar "AC" & bar "AB"`
∵ A is common
⇒ A B &C are collinear.
APPEARS IN
RELATED QUESTIONS
If the vectors `-3hati+4hatj-2hatk, hati+2hatk, hati-phatj` are coplanar, then the value of of p is
(A) -2
(B) 1
(C) -1
(D) 2
If the vectors `2hati-qhatj+3hatk and 4hati-5hatj+6hatk` are collinear, then value of q is
(A) 5
(B) 10
(C) 5/2
(D) 5/4
If a = `3hat"i" + hat"j" - hat"k"`, b = `2hat"i" - hat"j" + 7hat"k"` and c = `7hat"i" - hat"j" + 23 hat"k"` are three vectors, then which of the following statement is true.
If the vectors `hat"i" + hat"j" + hat"k"`, `hat"i" - hat"j" + hat"k"` and `2hat"i" + 3hat"j" + "m"hat"k"` are coplanar, then m = ____________.
If p, q and r are non-zero, non-coplanar vectors then [p + q - r p - q q - r] = ______.
If `hati - 2hatj + hatk`, `2hati + phatj + 3hatk` and `5hati - 9hatj + 4hatk` are coplanar, then the value of p is equal to ______
In a trapezium, if the vector `overline(BC) = lambda overline(AD)`, `overlinep = overline(AC) + overline(BD)` is collinear with `overline(AD)` and `overlinep = mu overline(AD)`, then ______
Let `overlinea = 2hati + hatj + hatk, overlineb = hati + 2hatj - hatk` and a unit vector `overlinec` be coplanar. If `overlinec` is perpendicular to `overlinea`, then `overlinec` = ______
If the points `P(overlinea+2overlineb+overlinec)`, `Q(2overlinea+3overlineb), R(overlineb+ t overlinec)` are collinear, where `overlinea, overlineb, overlinec` are three non-coplanar vectors, the value of t is ______
If (2, 3, 9), (5, 2, 1), (1, λ, 8) and (λ, 2, 3) are coplanar, then the product of all possible values of λ is ______.
If `vecp, vecq` and `vecr` are nonzero, noncoplanar vectors then `[(vecp + vecq - vecr, vecp - vecq, vecq - vecr)]` = ______.