English
Tamil Nadu Board of Secondary EducationHSC Science Class 11

Show that the following functions are not differentiable at the indicated value of x. ,,f(x)={3x,x<0-4x,x≥0 , x = 0 - Mathematics

Advertisements
Advertisements

Question

Show that the following functions are not differentiable at the indicated value of x.

`f(x) = {{:(3x",", x < 0),(-4x",", x ≥ 0):}` , x = 0

Sum

Solution

First we find the left limit of f(x) at x = 0

When x = 0, then x < 0

∴ f(x) = 3x

f(0) = 3 × 0 = 0

`f"'"(0^-) =  lim_(x -> 0^-) (f(x) - f(0))/(x - 0)`

= `lim_(x -> 0^-) (3x - 0)/x`

= `lim_(x -> 0^-) (3)` = 3  .........(1)

Next we find the right limit of f(x) at x = 0

When x = 0+, then x ≥ 0

∴ f(x) = – 4x

f(0) = – 4 × 0 = 0

`f"'"(0^+) =  lim_(x -> 0^+) (f(x) - f(0))/(x - 0)`

= `lim_(x -> 0^+) (- 4x - 0)/x`

= `lim_(x -> 0^+) (-4x)/x`

= `lim_(x -> 0^+) (- 4)` = – 4  .........(2)

From equations (1) and (2), we get

f'(0) ≠ f'((0+)

∴ f(x) is not differentiable at x = 0

shaalaa.com
Differentiability and Continuity
  Is there an error in this question or solution?
Chapter 10: Differential Calculus - Differentiability and Methods of Differentiation - Exercise 10.1 [Page 147]

APPEARS IN

Samacheer Kalvi Mathematics - Volume 1 and 2 [English] Class 11 TN Board
Chapter 10 Differential Calculus - Differentiability and Methods of Differentiation
Exercise 10.1 | Q 4. (ii) | Page 147

RELATED QUESTIONS

Find the derivatives of the following functions using first principle.

f(x) = 6


Find the derivatives of the following functions using first principle.

f(x) = – 4x + 7


Find the derivatives of the following functions using first principle.

f(x) = – x2 + 2


Find the derivatives from the left and from the right at x = 1 (if they exist) of the following functions. Are the functions differentiable at x = 1?

`f(x) = |x - 1|`


Find the derivatives from the left and from the right at x = 1 (if they exist) of the following functions. Are the functions differentiable at x = 1?

`f(x) = {{:(x",", x ≤ 1),(x^2",", x > 1):}`


Determine whether the following function is differentiable at the indicated values.

f(x) = x |x| at x = 0


Determine whether the following function is differentiable at the indicated values.

f(x) = |x2 – 1| at x = 1


Determine whether the following function is differentiable at the indicated values.

f(x) = |x| + |x – 1| at x = 0, 1


Determine whether the following function is differentiable at the indicated values.

f(x) = sin |x| at x = 0


Show that the following functions are not differentiable at the indicated value of x.

`f(x) = {{:(-x + 2, x ≤ 2),(2x - 4, x > 2):}` , x = 2


The graph of f is shown below. State with reasons that x values (the numbers), at which f is not differentiable.


Examine the differentiability of functions in R by drawing the diagram

|cos x|


Choose the correct alternative:

If f(x) = x2 – 3x, then the points at which f(x) = f’(x) are


Choose the correct alternative:

If y = mx + c and f(0) = f’(0) = 1, then f(2) is


Choose the correct alternative:

If f(x) = x + 2, then f'(f(x)) at x = 4 is


Choose the correct alternative:

If f(x) = `{{:(x + 1,  "when"   x < 2),(2x - 1,  "when"  x ≥ 2):}` , then f'(2) is


Choose the correct alternative:

If f(x) = `{{:(x + 2, - 1 < x < 3),(5, x = 3),(8 - x, x > 3):}` , then at x = 3, f'(x) is


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×