Advertisements
Advertisements
Question
Show that the function f given by f(x) = sin x + cos x, is strictly decreasing in the interval `(pi/4,(5pi)/4)`.
Sum
Solution
Given f(x) = sin x + cos x
f'(x) = cos x − sin x
putting f'(x) = 0
cos x = sin x
`x = pi/4,(5pi)/4` ...(for x ∈ [0, 2π])
plotting points
Here, when `x ∈ pi/4, (5pi)/4`
putting f'(x) = cos x − sin x
at `x = pi/2 ∈ (pi/4, (5pi)/4)`
`f' (pi/2) = cos pi/2 - sin pi/2=-1<0`
thus f'(x) < 0 for x ∈ `(pi/4, (5pi)/4)`
⇒ f is strictly decreasing in x ∈ `(pi/4, (5pi)/4)`
Hence proved.
shaalaa.com
Is there an error in this question or solution?