Advertisements
Advertisements
Question
सिद्ध कीजिए कि `sqrt5` एक अपरिमेय संख्या है।
Solution 1
इसके विपरीत, मान लें कि `sqrt5` अपरिमेय है।
अर्थात, हम पूर्णांक a और b (≠0) इस प्रकार पा सकते हैं कि `sqrt5 = a/b`
मान लें कि a और b में 1 के अलावा कोई अन्य उभयनिष्ठ गुणनखंड है, तो हम उभयनिष्ठ गुणनखंड से भाग दे सकते हैं और मान सकते हैं कि a और b सह-अभाज्य हैं।
इसलिए, b`sqrt5` = a
दोनों पक्षों पर वर्ग करने पर 5b2 = a2 ...(1)
उपर्युक्त का तात्पर्य है कि a2 5 से विभाज्य है और a भी 5 से विभाज्य है।
इसलिए, हम लिख सकते हैं कि किसी पूर्णांक k के लिए a = 5k.
(1) 5b2 = (5k)2
5b2 = 25k2 (या) b2 = 5k2
⇒ b2 5 से विभाज्य है, जिसका अर्थ है कि b भी 5 से विभाज्य है।
इसलिए, a और b का सामान्य गुणनखंड 5 है।
यह इस तथ्य का खंडन करता है कि a और b सह अभाज्य हैं।
हम ऊपर दिए गए विरोधाभासी कथन पर पहुँचे क्योंकि हमारी अनुमान `sqrt5` सही नहीं है।
इसलिए, हम यह निष्कर्ष निकाल सकते हैं कि `sqrt5` एक अपरिमेय संख्या है।
Solution 2
माना `sqrt5` एक परिमेय संख्या `a/b` के रुप की है, जहाँ b ≠ 0
माना `sqrt5 = a/b`
दोनों तरफ़ वर्ग करने पर,
`(sqrt5)^2 = (a/b)^2`
⇒ `5 = a^2/b^2`
⇒ a2 = 5b2 ...(1)
यदि a2, 5 से विभाज्य है तो a भी 5 से विभाज्य होगा।
माना a = 5k, जहाँ k कोई पूर्णान्क है।
दोनों तरफ़ वर्ग करने पर,
⇒ `a^2 = (5k)^2`
समीकरण (1) में मान रखने पर
⇒ `(5k)^2 = 5b^2`
⇒ `b^2 = 5k^2` ...(2)
यदि b2, 5 से विभाज्य है तो b भी 5 से विभाज्य होगा।
समीकरण (1) एवं (2) से हम कह सकते है कि a और b दोनों 5 से विभाज्य है।
यह हमारी अनुमान के विपरीत है।
इसलिये हम कह सकते है कि `sqrt5` एक अपरिमेय संख्या है।
APPEARS IN
RELATED QUESTIONS
सिद्ध कीजिए कि `3 + 2sqrt5` एक अपरिमेय संख्या है।
सिद्ध कीजिए कि निम्नलिखित संख्या अपरिमेय हैं:
`1/sqrt2`
नीचे दिए गए कथन सत्य हैं या असत्य हैं। कारण के साथ अपने उत्तर दीजिए।
प्रत्येक अपरिमेय संख्या एक वास्तविक संख्या होती है।
नीचे दिए गए कथन सत्य हैं या असत्य हैं। कारण के साथ अपने उत्तर दीजिए।
संख्या रेखा का प्रत्येक बिन्दु `sqrtm` के रूप का होता है, जहाँ m एक प्राकृत संख्या है।
क्या सभी धनात्मक पूर्णांकों के वर्गमूल अपरिमेय होते हैं? यदि नहीं, तो एक ऐसी संख्या के वर्गमूल का उदाहरण दीजिए जो एक परिमेय संख्या है।
परिमेय संख्याओं `5/7` और `9/11` बीच की तीन अलग-अलग अपरिमेय संख्याएँ ज्ञात कीजिए।
बताइए कि निम्नलिखित संख्या परिमेय हैं या अपरिमेय हैं:
0.3796
एक परिमेय संख्या का दशमलव निरूपण नहीं हो सकता :
निम्नलिखित में से कौन-सी एक अपरिमेय संख्या है?
`sqrt(2)/3` एक परिमेय संख्या है।