Advertisements
Advertisements
Question
निम्नलिखित में से कौन-सी एक अपरिमेय संख्या है?
Options
`sqrt(4/9)`
`sqrt(12)/sqrt(3)`
`sqrt(7)`
`sqrt(81)`
Solution
`bb(sqrt(7))`
स्पष्टीकरण -
अपरिमेय संख्याएँ वास्तविक संख्याएँ होती हैं जिन्हें साधारण भिन्नों के रूप में प्रदर्शित नहीं किया जा सकता।
उदाहरण: `sqrt(2), sqrt(3), pi`
`sqrt(4/9) = 2/3` ...(तर्कसंगत)
`sqrt(12)/sqrt(3) = (2sqrt(3))/sqrt(3) = 2` ...(तर्कसंगत)
`sqrt(81) = 9` ...(तर्कसंगत)
लेकिन `sqrt(7)` एक अपरिमेय संख्या है।
APPEARS IN
RELATED QUESTIONS
सिद्ध कीजिए कि `sqrt5` एक अपरिमेय संख्या है।
सिद्ध कीजिए कि `3 + 2sqrt5` एक अपरिमेय संख्या है।
सिद्ध कीजिए कि निम्नलिखित संख्या अपरिमेय हैं:
`7sqrt5`
दिखाइए कि संख्या रेखा पर `sqrt5` को किस प्रकार निरूपित किया जा सकता है।
परिमेय संख्याओं `5/7` और `9/11` बीच की तीन अलग-अलग अपरिमेय संख्याएँ ज्ञात कीजिए।
बताइए कि निम्नलिखित संख्या परिमेय हैं या अपरिमेय हैं:
`sqrt225`
बताइए कि निम्नलिखित संख्या परिमेय हैं या अपरिमेय हैं:
1.101001000100001...
एक शून्येतर परिमेय संख्या और एक अपरिमेय संख्या का गुणनफल होता है
मान लीजिए कि x और y क्रमशः परिमेय और अपरिमेय संख्याएँ हैं। क्या x + y आवश्यक रूप से एक अपरिमेय संख्या है? अपने उत्तर की पुष्टि के लिए एक उदाहरण दीजिए।
कक्षा के लिए क्रियाकलाप (वर्गमूल सर्पिल की रचना): कागज की एक बड़ी शीट लीजिए और नीचे दी गई विधि से “वर्गमूल सर्पिल” (square root spiral) की रचना कीजिए। सबसे पहले एक बिन्दु O लीजिए और एकक लंबाई का रेखाखंड (line segment) OP खींचिए। एकक लंबाई वाले OP1 पर लंब रेखाखंड P1P2 खींचिए। अब OP2, पर लंब रेखाखंड P2P3 खींचिए। तब OP3 पर लंब रेखाखंड P3P4 खींचिए। इस प्रक्रिया को जारी रखते हुए OPn–1 पर एकक लंबाई वाला लंब रेखाखंड खींचकर आप रेखाखंड Pn–1Pn प्राप्त कर सकते हैं। इस प्रकार आप बिन्दु O, P1, P2, P3,..., Pn,... प्राप्त कर लेंगे और उन्हें मिलाकर `sqrt2, sqrt3, sqrt4...` को दर्शाने वाला एक सुंदर सर्पिल प्राप्त कर लेंगे।