Advertisements
Advertisements
Question
Simplify the following using multiplication and division properties of surds:
`root(3)(27) xx root(3)(8) xx root(3)(125)`
Solution
`root(3)(27) xx root(3)(8) xx root(3)(125) = root(3)(27 xx 8 xx 125)`
= `root(3)(3^3 xx 2^3 xx 5^3)`
= 3 × 2 × 5
= 30
APPEARS IN
RELATED QUESTIONS
Simplify.
`9 sqrt 5 - 4 sqrt 5 + sqrt 125`
Divide and write the answer in simplest form.
`sqrt 125 ÷ sqrt 50`
Simplify.
`sqrt 216 - 5 sqrt 6 +sqrt 294 -3/sqrt6`
Simplify the following using addition and subtraction properties of surds:
`5sqrt(3) + 18sqrt(3) - 2sqrt(3)`
Simplify the following using addition and subtraction properties of surds:
`3sqrt(75) + 5sqrt(48) - sqrt(243)`
Simplify the following using addition and subtraction properties of surds:
`5root(3)(40) + 2root(3)(625) - 3root(3)(320)`
Simplify the following using multiplication and division properties of surds:
`sqrt(35) ÷ sqrt(7)`
Simplify the following using multiplication and division properties of surds:
`(7sqrt("a") - 5sqrt("b")) (7sqrt("a") + 5sqrt("b"))`
If `sqrt(2)` = 1.414, `sqrt(3)` = 1.732, `sqrt(5)` = 2.236, `sqrt(10)` = 3.162, then find the values of the following correct to 3 places of decimals.
`sqrt(300) + sqrt(90) - sqrt(8)`
`4sqrt(7) xx 2sqrt(3)` =