Advertisements
Advertisements
Question
Simplify the following using multiplication and division properties of surds:
`(7sqrt("a") - 5sqrt("b")) (7sqrt("a") + 5sqrt("b"))`
Solution
`(7sqrt("a") - 5sqrt("b")) (7sqrt("a") + 5sqrt("b"))` ...[using a2 – b2 = (a + b) (a – b)]
`(7sqrt("a") - 5sqrt("b")) (7sqrt("a") + 5sqrt("b")) = (7sqrt("a"))^2 - (5sqrt("b"))^2`
= 49a – 25b
APPEARS IN
RELATED QUESTIONS
Simplify.
`5 sqrt 3 + 8 sqrt 3`
Simplify.
`9 sqrt 5 - 4 sqrt 5 + sqrt 125`
Simplify.
`7 sqrt 48 - sqrt 27 - sqrt 3`
Multiply and write the answer in the simplest form.
`3sqrt 12 xx 7 sqrt 15`
Divide and write the answer in simplest form.
`sqrt98 ÷ sqrt 2`
Simplify.
`5sqrt 3 + 2 sqrt 27 +1/sqrt3`
Simplify the following using addition and subtraction properties of surds:
`5root(3)(40) + 2root(3)(625) - 3root(3)(320)`
Simplify the following using multiplication and division properties of surds:
`sqrt(35) ÷ sqrt(7)`
If `sqrt(2)` = 1.414, `sqrt(3)` = 1.732, `sqrt(5)` = 2.236, `sqrt(10)` = 3.162, then find the values of the following correct to 3 places of decimals.
`sqrt(40) - sqrt(20)`
`sqrt(27) + sqrt(12)` =