Advertisements
Advertisements
Question
समीकरण 3x - 2y = 17 मध्ये (i) y = -1 असताना x ची किंमत शोधा. (ii) x = 3 असताना y ची किंमत काढा.
Solution
i. y = -1 ही किंमत समीकरण 3x - 2y = 17 मध्ये ठेवून,
3x – 2(– 1) = 17
∴ 3x + 2 = 17
∴ 3x = 17 – 2
∴ 3x = 15
∴ x = `15/3 = 5`
ii. x = 3 ही किंमत समीकरण 3x - 2y = 17 मध्ये ठेवून,
3(3) – 2y = 17
∴ 9 – 2y = 17
∴ 2y = 9 – 17
∴ 2y = – 8
∴ y = `(-8)/2 = -4`
∴ y = -1 असताना y ची किंमत 5 आहे आणि x = 3 असताना y ची किंमत – 4 आहे.
APPEARS IN
RELATED QUESTIONS
दोन संख्यांमधील फरक ३ असून मोठ्या संख्येची तिप्पट आणि लहान संख्येची दुप्पट यांची बेरीज १९ आहे, तर त्या संख्या शोधा.
एका अपूर्णांकाचा छेद हा अंशाच्या दुपटीपेक्षा 4 ने मोठा आहे. जर अंश आणि छेद दोन्ही 6 ने कमी केले, तर छेद हा अंशाच्या 12 पट होतो, तर तो अपूर्णांक काढा.
10 टनांची क्षमता असणाऱ्या मालवाहू ट्रकमध्ये A आणि B अशा दोन विशिष्ट वजनाच्या पेट्या भरलेल्या आहेत. जर A प्रकारच्या 150 पेट्या व B प्रकारच्या 100 पेट्या भरल्या, तर ट्रकची 10 टनांची क्षमता पूर्ण होते. जर A प्रकारच्या 260 पेट्या भरल्या, तर तो ट्रक त्याच्या 10 टनांच्या पूर्ण क्षमतेने भरण्यास B प्रकारच्या 40 पेट्या लागतात, तर प्रत्येक प्रकारच्या पेटीचे वजन किती?
विशालने 1900 किमी प्रवासापैकी काही अंतर बसने, तर उरलेले अंतर विमानाने पूर्ण केले. बसचा सरासरी वेग 60 किमी दर तास आहे, तर विमानाचा सरासरी वेग 700 किमी/तास आहे. जर हा प्रवास त्याने 5 तासांत पूर्ण केला असेल, तर विशालने बसने किती किमी प्रवास केला?
कांताबाईंनी दुकानातून दीड किलो चहा व पाच किलो साखर आणली. दुकानात जाऊन येण्यासाठी त्यांना 50 रुपये रिक्षाभाडे द्यावे लागले. यासाठी त्यांचे 700 रुपये खर्च झाले. नंतर त्यांना असे समजले, की या वस्तू ऑनलाइन ऑर्डर नोंदवून त्याच दराने घरपोच मिळतात. पुढील महिन्यात त्यांनी 2 किलोग्राम चहा व ७ किलोग्राम साखर ऑनलाइन मागवली, तेव्हा त्यांचा 880 रुपये खर्च झाला, तर चहा आणि साखर यांचा प्रतिकिलोग्राम दर काढा.
एका कारखान्यातील कुशल आणि अकुशल कामगारांच्या रोजगारांचे गुणोत्तर 5 : 3 आहे. एका कुशल आणि एका अकुशल कामगाराचा एका दिवसाचा एकूण रोजगार 720 रुपये आहे, तर प्रत्येक कुशल कामगाराचा आणि अकुशल कामगाराचा रोजगार काढा.
एक व्यक्ती एका निश्चित पगार आणि दरवर्षी ठरावीक वेतनवाढ या अटींवर नोकरी सुरू करते. 4 वर्षांनी त्या व्यक्तीचा पगार रुपये 15000 आणि 10 वर्षांनी पगार रुपये 18000 असल्यास त्या व्यक्तीचा मूळ पगार आणि वेतनवाढ काढा.
मी 75 ही संख्या मनात धरली, त्या संख्येच्या दोन्ही अंकांतील संबंध दर्शवणारी अट लिहा. मूळ संख्या आणि अंकांची अदलाबदल करून येणाऱ्या संख्येतील संबंध दर्शवणारी अट लिहा.
एका समद्विभुज त्रिकोणाची परिमिती 24 सेमी आहे. एकरूप बाजूंची लांबी ही पायाच्या दुपटीपेक्षा 13 सेमीने कमी आहे, तर त्या त्रिकोणाच्या सर्व बाजूंची लांबी काढा.