Advertisements
Advertisements
Question
संलग्न आकृति में समांतर चतुर्भुज `square` ABCD की भुजाओं पर P, Q, R, S इस प्रकार है कि, AP = BQ = CR = DS तो सिद्ध कीजिए कि `square` PQRS समांतर चतुर्भुज है।
Solution
दत्त: `square` ABCD समांतर चतुर्भुज है।
AP = BQ = CR = DS
साध्य: `square` PQRS समांतर चतुर्भुज है।
उपपत्ति:
AP = CR .....(दत्त) ...(i)
`square` ABCD समांतर चतुर्भुज है।
AB = CD ...( समांतर चतुर्भुज की सम्मुख भुजाएँ)
∴ AP + PB = CR + RD ....[A-P-B, D-R-C] ....(ii)
∴ PB = RD .....[(i) और (ii) से] ...(iii)
∠ABC ≅ ∠ADC ....(समांतर चतुर्भुज के सम्मुख कोण)
अर्थात, ∠PBQ ≅ ∠RDS ...(A-P-B, B-Q-C, C-R-D और A-S-D) ....(iv)
ΔPBQ तथा ΔRDS में,
रेख PB ≅ रेख RD ....[(iii) से]
∠PBQ ≅ ∠RDS ....[(iv) से]
रेख BQ ≅ रेख SD ....(दत्त)
∴ ΔPBQ ≅ ΔRDS ....(सर्वांगसमता की भु-को-भु कसौटी)
रेख PQ ≅ रेख RS ....(स.त्रि.सं.भु) .....(v)
इस प्रकार, हम सिद्ध कर सकते हैं कि, ΔPAS ≅ ΔRCQ,
∴ रेख PS ≅ रेख RQ ....(vi)
`square` PQRS में,
रेख PQ ≅ रेख RS ....[(v) से]
रेख PS ≅ रेख RQ ....[(vi) से]
यदि किसी चतुर्भुज की सम्मुख भुजाएँ सर्वांगसम हो, तो वह समांतर चतुर्भुज होता है।
∴ `square` PQRS समांतर चतुर्भुज है।
APPEARS IN
RELATED QUESTIONS
ABCD एक समलंब है, जिसमें AB || DC और AD = BC है (देखिए आकृति में)। दर्शाइए कि
- ∠A = ∠B
- ∠C = ∠D
- ΔABC ≅ ΔBAD
- विकर्ण AC = विकर्ण BD है।
[संकेत: AB को बढ़ाइए और C से होकर DA के समांतर एक रेखा खींचिए जो बढ़ी हुई भुजा AB को E पर प्रतिच्छेद करे।]
दी गई आकृति में RISK तथा CLUE दोनों समांतर चतुर्भुज हैं, x का मान ज्ञात कीजिए।
निम्नलिखित के लिए कारण दीजिए:
वर्ग, आयत, समांतर चतुर्भुज और समचतुर्भुज में से प्रत्येक एक चतुर्भुज भी है।
एक चतुर्भुज ABCD के विकर्ण परस्पर समद्विभाजित करते हैं। यदि ∠A = 35° है, तो ∠B निर्धारित कीजिए।
एक चतुर्भुज ABCD के सम्मुख कोण बराबर हैं। यदि AB = 4 cm है, तो CD निर्धारित कीजिए।
एक समांतर चतुर्भुज ABCD में, AB = 10 cm और AD = 6 cm है। ∠A का समद्विभाजक DC से E पर मिलता है तथा AE और BC बढ़ाने पर F पर मिलते हैं। CF की लंबाई ज्ञात कीजिए।
एक समांतर चतुर्भुज की आसन्न भुजाएँ 5 cm और 9 cm है। उसका परिमाप ______ है।
यदि एक चतुर्भुज के सम्मुख कोण बराबर हों, तो वह अवश्य ही समांतर चतुर्भुज होगा।
निम्न समांतर चतुर्भुज में, x और y के मान ज्ञात कीजिए –
संलग्न आकृति में रेख AB || रेख PQ , रेख AB ≅ रेख PQ, रेख AC || रेख PR, रेख AC ≅ रेख PR तो सिद्ध कीजिए कि रेख BC || रेख QR तथा रेख BC ≅ रेख QR