Advertisements
Advertisements
Question
Solve the following differential equation:
`("d"y)/("d"x) = "e"^(x + y) - x^3"e"^y`
Solution
`("d"y)/("d"x) "e"^(x + y) + x^3, ("e"^y)`
= ey[ex + x3]
`("d"y)/"e"^y` = dx(ex + x3)
The equation can be written as
`("d"y)/"e"^y` = (ex + x3)dx
Taking integration on both sides, we get
`int "e"^y "d"y = int ("e"^x + x^3) "d"x`
`"e"^y/(-1) = "e"^x + x^4/4 + "C"`
Where – C = C
Which is also constant
∴ `"e"^x + "e"^-y + x^4/4` = – C = C
∴ `"e"^x + "e"^-y + x^4/4` = C
APPEARS IN
RELATED QUESTIONS
The velocity v, of a parachute falling vertically satisfies the equation `"v" (dv)/(dx) = "g"(1 - v^2/k^2)` where g and k are constants. If v and are both initially zero, find v in terms of x
Solve the following differential equation:
`y"e"^(x/y) "d"x = (x"e"^(x/y) + y) "d"y`
Solve the following differential equation:
`2xy"d"x + (x^2 + 2y^2)"d"y` = 0
Solve the following differential equation:
`(1 + 3"e"^(y/x))"d"y + 3"e"^(y/x)(1 - y/x)"d"x` = 0, given that y = 0 when x = 1
Choose the correct alternative:
The number of arbitrary constants in the general solutions of order n and n +1are respectively
Choose the correct alternative:
The number of arbitrary constants in the particular solution of a differential equation of third order is
Solve: ydx – xdy = 0 dy
Solve : cos x(1 + cosy) dx – sin y(1 + sinx) dy = 0
Solve the following homogeneous differential equation:
`x ("d"y)/("d"x) = x + y`
Solve the following homogeneous differential equation:
`x ("d"y)/("d"x) - y = sqrt(x^2 + y^2)`
Solve the following:
`("d"y)/("d"x) - y/x = x`
Solve the following:
`("d"y)/(""dx) + y cos x = sin x cos x`
Solve the following:
`("d"y)/("d"x) + y/x = x'e"^x`
Choose the correct alternative:
If y = ex + c – c3 then its differential equation is
Choose the correct alternative:
The solution of the differential equation `("d"y)/("d"x) + "P"y` = Q where P and Q are the function of x is
Choose the correct alternative:
The differential equation of x2 + y2 = a2
Solve (x2 + y2) dx + 2xy dy = 0
Solve (D2 – 3D + 2)y = e4x given y = 0 when x = 0 and x = 1
Solve `("d"y)/("d"x) = xy + x + y + 1`