Advertisements
Advertisements
Question
Solve the following equations graphically :
2x - 6y + 10 = 0
3x - 9y + 25 = 0
Solution
2x - 6y + 10 = 0
3x - 9y + 25 = 0
2x - 6y + 10 = 0 _________(1)
3x - 9y + 25 = 0 _________(2)
2x - 6y + 10 = 0
⇒ x = `(6y - 10)/(2)`
= 3y - 5
Corresponding values of x and y can be tabulated as :
x | -5 | -2 | 1 |
y | 0 | 1 | 2 |
Plotting points (-5, 0),(-2, 1), (1, 2) and joining them, we get a line l1 which is the graph of the equation (1).
Again, 3x - 9y + 25 = 0
⇒ x = `(9y - 25)/(3)`
Corresponding values of x and y can be tabulated as :
x | 0 | `(-25)/(3)` = 8.33 |
y | `(25)/(9)` =2.77 | 0 |
Plotting points `(0, 25/9), ((-25)/3, 0)` and joining them, we get a line l2 which is the graph of the equation (2).
The line l1 and l2 do not intersect each other.
Thus, the given equations do not have any solution.
APPEARS IN
RELATED QUESTIONS
Find graphically, the vertices of the triangle whose sides have the equations 2y - x = 8; 5y - x = 14 and y - 2x = 1 respectively. Take 1 cm = 1 unit on both the axes.
Solve the following equations graphically :
2x + 4y = 7
3x + 8y = 10
Solve the following equations graphically :
x + 4y + 9 = 0
3y = 5x - 1
Solve the following equations graphically :
x = 4
`(3x)/(3) - y = 5`
Solve the following equations graphically :
x - 2y = 2
`x/(2) - y` = 1
Solve the following equations graphically :
`2 + (3y)/x = (6)/x`
`(6x)/y - 5 = (4)/y`
Find graphically the vertices of the triangle, whose sides are given by 3y = x + 18, x + 7y = 22 and y + 3x = 26.
Solve the following system of equations graphically
x - y + 1 = 0
4x + 3y = 24
Solve the following system of equations graphically:
2x = 23 - 3y
5x = 20 + 8y
Also, find the area of the triangle formed by these lines and x-axis in each graph.
Solve graphically
`x/2 + y/4` = 1, `x/2 + y/4` = 2