Advertisements
Advertisements
Question
Solve the following equations graphically :
`2 + (3y)/x = (6)/x`
`(6x)/y - 5 = (4)/y`
Solution
`2 + (3y)/x = (6)/x`
`(6x)/y - 5 = (4)/y`
`2 + (3y)/x = (6)/x` ⇒ 2x + 3y = 6 _________(1)
`(6x)/y - 5 = (4)/y` ⇒ 6x + 5y = 4 _________(2)
2x + 3y = 6
⇒ y = `(6 - 2x)/(3)`
Corresponding values of x and y can be tabulated as :
x | 3 | -3 | 0 |
y | 0 | 4 | 2 |
Plotting points (3, 0), (-3, 4), (0, 2) and joining them, we get a line l1 which is the graph of equation (1).
6x - 5y = 4
⇒ y = `(6x - 4)/(5)`
Corresponding values of x and y can be tabulated as :
x | 1 | 2 | 3 |
y | 0.4 | 1.6 | 2.8 |
Plotting point (1, 0.4), (2, 1.6), (3, 2.8) and joining them, we get a line l2 which is the graph of equation (2).
The line l1 and l2 intersect at a unique point `(3/2 ,1)`.
APPEARS IN
RELATED QUESTIONS
The cost of manufacturing x articles is Rs. (50 + 3x). The selling price of x articles is Rs. 4x.
On a graph sheet, with the same axes, and taking suitable scales draw two graphs, first for the cost of manufacturing against no. of articles and the second for the selling price against the number of articles.
Use your graph to determine:
No. of articles to be manufactured and sold to break even (no profit and no loss).
Solve the following equations graphically :
x + 3y = 8
3x = 2 + 2y
Solve the following equations graphically :
x + 4y + 9 = 0
3y = 5x - 1
Solve the following equations graphically :
3y = 5 - x
2x = y + 3
Solve the following equations graphically :
x - 2y = 2
`x/(2) - y` = 1
Solve the following equations graphically :
x+ 2y - 7 = 0
2x - y - 4 = 0
Solve the following system of equations graphically
x - y + 1 = 0
4x + 3y = 24
Solve the following system of equations graphically:
2x = 23 - 3y
5x = 20 + 8y
Also, find the area of the triangle formed by these lines and x-axis in each graph.
Solve the following system of equations graphically:
6x - 3y + 2 = 7x + 1
5x + 1 = 4x - y + 2
Also, find the area of the triangle formed by these lines and x-axis in each graph.
Two cars are 100 miles apart. If they drive towards each other they will meet in 1 hour. If they drive in the same direction they will meet in 2 hours. Find their speed by using graphical method.