Advertisements
Advertisements
Question
Solve the following system of equations graphically:
6x - 3y + 2 = 7x + 1
5x + 1 = 4x - y + 2
Also, find the area of the triangle formed by these lines and x-axis in each graph.
Solution
The given system of equations are
6x - 3y + 2 = 7x + 1 and 5x + 1 = 4x - y + 2
Now, 6x - 3y + 2
= 7x + 1 ....(1)
⇒ x = 1 - 3y
Corresponding values of x and y can be tabulated as :
x | 1 | -2 | 4 |
y | 0 | 1 | -1 |
Plotting points (1, 0), (-2, 1) and (4, -1) joining them, we get a line l1 which is the graph of equation (i).
Again, 5x + 1 = 4x - y + 2 ....(ii)
⇒ x = 1 - y
Corresponding values of x and y can be tabulated as :
x | -1 | 3 | -2 |
y | 2 | -2 | 3 |
Plotting points (-1, 2), (3, -2) and (-2, 3) joining them, we get a line l2 which is the graph of equation (ii).
The two lines l1 and l2 intersect at a point P(1, 0).
∴ x = 1, y = 0 is the solution of the given system of equations.
Since both the lines l1 and l2 are intersecting each other at X-axis, no triangle is formed by these lines with X-axis.
APPEARS IN
RELATED QUESTIONS
The sides of a triangle are given by the equations y - 2 = 0; y + 1 = 3 (x - 2) and x + 2y = 0.
Find, graphically :
(i) the area of a triangle;
(ii) the coordinates of the vertices of the triangle.
The cost of manufacturing x articles is Rs.(50 + 3x). The selling price of x articles is Rs. 4x.
On a graph sheet, with the same axes, and taking suitable scales draw two graphs, first for the cost of manufacturing against no. of articles and the second for the selling price against the number of articles.
Use your graph to determine:
The profit or loss made when (a) 30 (b) 60 articles are manufactured and sold.
Find graphically, the vertices of the triangle whose sides have the equations 2y - x = 8; 5y - x = 14 and y - 2x = 1 respectively. Take 1 cm = 1 unit on both the axes.
Solve the following equations graphically :
2x - y = 9
5x + 2y = 27
Solve the following equations graphically :
x = 4
`(3x)/(3) - y = 5`
Solve the following equations graphically :
3y = 5 - x
2x = y + 3
Solve the following equations graphically :
x - 2y = 2
`x/(2) - y` = 1
Solve the following system of equations graphically:
2x = 23 - 3y
5x = 20 + 8y
Also, find the area of the triangle formed by these lines and x-axis in each graph.
Solve graphically
`x/2 + y/4` = 1, `x/2 + y/4` = 2
Two cars are 100 miles apart. If they drive towards each other they will meet in 1 hour. If they drive in the same direction they will meet in 2 hours. Find their speed by using graphical method.