Advertisements
Advertisements
Question
Solve the following pair of linear (simultaneous) equation using method of elimination by substitution :
2x - 3y + 6 = 0
2x + 3y - 18 = 0
Solution
2x - 3y + 6 = 0
⇒ 2x = 3y - 6
⇒ x = `[ 3y - 6 ]/2` ...(1)
And,
2x + 3y - 18 = 0
⇒ 2`([3y - 6]/2)`+ 3y = 18 ...[From(1)]
⇒ 3y - 6 + 3y = 18
⇒ 6y = 24
⇒ y = 4
Substituting the value of y in (1), we have
x = `[ 3 xx 4 - 6]/2 = [12 - 6]/2 = 6/2 = 3`
∴ Solution is x = 3 and y = 4.
APPEARS IN
RELATED QUESTIONS
Solve the pair of linear (simultaneous) equation by the method of elimination by substitution :
2x - 3y = 7
5x + y= 9
Solve the pair of linear (simultaneous) equation by the method of elimination by substitution :
y = 4x - 7
16x - 5y = 25
Solve the following pair of linear (simultaneous) equation by the method of elimination by substitution:
1.5x + 0.1y = 6.2
3x - 0.4y = 11.2
Solve the following pair of linear (Simultaneous ) equation using method of elimination by substitution :
2( x - 3 ) + 3( y - 5 ) = 0
5( x - 1 ) + 4( y - 4 ) = 0
Solve th following pair of linear (Simultaneous ) equation using method of elimination by substitution :
`[ 2x + 1]/7 + [5y - 3]/3 = 12`
`[3x + 2 ]/2 - [4y + 3]/9 = 13`
Solve the following pair of linear (simultaneous) equation using method of elimination by substitution:
`[3x]/2 - [5y]/3 + 2 = 0`
`x/3 + y/2 = 2 1/6`
Solve the following pairs of linear (simultaneous) equation using method of elimination by substitution:
`x/6 + y/15 = 4`
`x/3 - y/12 = 4 3/4`
Solve the following simultaneous equations by the substitution method:
5x + 4y - 23 = 0
x + 9 = 6y
Solve the following simultaneous equations by the substitution method:
2x + 3y = 31
5x - 4 = 3y
Solve the following simultaneous equations by the substitution method:
7x - 3y = 31
9x - 5y = 41
Solve the following simultaneous equations by the substitution method:
0.5x + 0.7y = 0.74
0.3x + 0.5y = 0.5
Solve the following simultaneous equations by the substitution method:
0.4x + 0.3y = 1.7
0.7x - 0.2y = 0.8
Solve the following pairs of equations:
`(6)/(x + y) = (7)/(x - y) + 3`
`(1)/(2(x + y)) = (1)/(3( x - y)`
Where x + y ≠ 0 and x - y ≠ 0
The difference of two numbers is 3, and the sum of three times the larger one and twice the smaller one is 19. Find the two numbers.
If a number is thrice the other and their sum is 68, find the numbers.
A two-digit number is such that the ten's digit exceeds thrice the unit's digit by 3 and the number obtained by interchanging the digits is 2 more than twice the sum of the digits. Find the number.
Five years ago, a man was seven times as old as his son, while five year hence, the man will be four times as old as his son. Find their present age