English

If a Number is Thrice the Other and Their Sum is 68, Find the Numbers. - Mathematics

Advertisements
Advertisements

Question

If a number is thrice the other and their sum is 68, find the numbers.

Sum

Solution

Let the two numbers be x and y respectively.
Then, we have
x = 3y    ....(i)
And,
x + y = 68
⇒ 3y + y = 68
⇒ 4y = 68
⇒ y = 17
⇒ x = 3 x 17
= 51
Thus, the two numbersare 51 and 17 respectively.

shaalaa.com
Methods of Solving Simultaneous Linear Equations by Elimination Method
  Is there an error in this question or solution?
Chapter 8: Simultaneous Linear Equations - Exercise 8.3

APPEARS IN

Frank Mathematics [English] Class 9 ICSE
Chapter 8 Simultaneous Linear Equations
Exercise 8.3 | Q 3

RELATED QUESTIONS

Solve the pair of linear (simultaneous) equation by the method of elimination by substitution :
8x + 5y = 9
3x + 2y = 4


Solve the pair of linear (simultaneous) equation by the method of elimination by substitution:
2x + 3y = 8
2x = 2 + 3y


Solve the following pair of linear (simultaneous) equation by the method of elimination by substitution:

0.2x + 0.1y = 25

2(x - 2) - 1.6y = 116


Solve the pair of linear (simultaneous) equation by the method of elimination by substitution:
6x = 7y + 7
7y - x = 8


Solve the following pair of linear (simultaneous) equation by the method of elimination by substitution:

1.5x + 0.1y = 6.2

3x - 0.4y = 11.2


Solve the following pair of linear (Simultaneous ) equation using method of elimination by substitution :
2( x - 3 ) + 3( y - 5 ) = 0
5( x - 1 ) + 4( y - 4 ) = 0


Solve the following simultaneous equations by the substitution method:
2x + y = 8
3y = 3 + 4x


Solve the following simultaneous equations by the substitution method:
x + 3y= 5
7x - 8y = 6


Solve the following simultaneous equations by the substitution method:
7x - 3y = 31
9x - 5y = 41


Solve the following simultaneous equations by the substitution method:
13 + 2y = 9x
3y = 7x


Solve the following simultaneous equations by the substitution method:
0.4x + 0.3y = 1.7
0.7x - 0.2y = 0.8


Solve the following simultaneous equations by the substitution method:
3 - (x + 5) = y + 2
2(x + y) = 10 + 2y


The difference of two numbers is 3, and the sum of three times the larger one and twice the smaller one is 19. Find the two numbers.


Solve by the method of elimination

x – y = 5, 3x + 2y = 25


Solve by the method of elimination

3(2x + y) = 7xy, 3(x + 3y) = 11xy


Solve by the method of elimination

13x + 11y = 70, 11x + 13y = 74


The monthly income of A and B are in the ratio 3 : 4 and their monthly expenditures are in the ratio 5 : 7. If each saves ₹ 5,000 per month, find the monthly income of each


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×