English

The Sum of Four Times the First Number and Three Times the Second Number is 15. the Difference of Three Times the First Number and Twice the Second Number is 7. Find the Numbers. - Mathematics

Advertisements
Advertisements

Question

The sum of four times the first number and three times the second number is 15. The difference of three times the first number and twice the second number is 7. Find the numbers.

Sum

Solution

Let the two numbers be x and y respectively.
Then, we have
4x + 3y = 15    ....(i)
3x - 2y = 7      ....(ii)
Multiplying eqn. (i) by 2 and eqn. (ii) by 3, we get
8x + 6y = 30  ....(iii)
9x - 6y = 21   ....(iv)
Adding eqns. (iii) and (iv), we get
17x = 51
⇒ x = 3
⇒ 4(3) + 3y = 15
⇒ 12 + 3y = 15
⇒ 3y = 3
⇒ y = 1
Thus, the two numbers are 3 and 1 respectively.

shaalaa.com
Methods of Solving Simultaneous Linear Equations by Elimination Method
  Is there an error in this question or solution?
Chapter 8: Simultaneous Linear Equations - Exercise 8.3

APPEARS IN

Frank Mathematics [English] Class 9 ICSE
Chapter 8 Simultaneous Linear Equations
Exercise 8.3 | Q 4

RELATED QUESTIONS

Solve the pair of linear (simultaneous) equation by the method of elimination by substitution :
2x - 3y = 7
5x + y= 9


Solve the following pair of linear (simultaneous) equation by the method of elimination by substitution:

0.2x + 0.1y = 25

2(x - 2) - 1.6y = 116


Solve the pair of linear (simultaneous) equation by the method of elimination by substitution :
y = 4x - 7
16x - 5y = 25


Solve the following pair of linear (simultaneous) equation using method of elimination by substitution:
3x + 2y =11
2x - 3y + 10 = 0


Solve the following pair of linear (simultaneous) equation using method of elimination by substitution :
2x - 3y + 6 = 0
2x + 3y - 18 = 0


Solve th following pair of linear (Simultaneous ) equation using method of elimination by substitution :
`[ 2x + 1]/7 + [5y - 3]/3 = 12`

`[3x + 2 ]/2 - [4y + 3]/9 = 13`   


Solve the following simultaneous equations by the substitution method:
x + 3y= 5
7x - 8y = 6


Solve the following simultaneous equations by the substitution method:
2x + 3y = 31
5x - 4 = 3y


Solve the following simultaneous equations by the substitution method:
7x - 3y = 31
9x - 5y = 41


Solve the following simultaneous equations by the substitution method:
0.5x + 0.7y = 0.74
0.3x + 0.5y = 0.5


Solve the following simultaneous equations by the substitution method:
0.4x + 0.3y = 1.7
0.7x - 0.2y = 0.8


Solve the following simultaneous equations by the substitution method:
3 - (x + 5) = y + 2
2(x + y) = 10 + 2y


Solve the following simultaneous equations by the substitution method:
7(y + 3) - 2(x + 2) = 14
4(y - 2) + 3(x - 3) = 2


Solve the following pairs of equations:

`(6)/(x + y) = (7)/(x - y) + 3`

`(1)/(2(x + y)) = (1)/(3( x - y)`
Where x + y ≠ 0 and x - y ≠ 0


The age of the father is seven times the age of the son. Ten years later, the age of the father will be thrice the age of the son. Find their present ages.


Solve by the method of elimination

2x – y = 3, 3x + y = 7


Solve by the method of elimination

`4/x + 5y` = 7, `3/x + 4y` = 5


The monthly income of A and B are in the ratio 3 : 4 and their monthly expenditures are in the ratio 5 : 7. If each saves ₹ 5,000 per month, find the monthly income of each


Five years ago, a man was seven times as old as his son, while five year hence, the man will be four times as old as his son. Find their present age


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×
Our website is made possible by ad-free subscriptions or displaying online advertisements to our visitors.
If you don't like ads you can support us by buying an ad-free subscription or please consider supporting us by disabling your ad blocker. Thank you.