Advertisements
Advertisements
Question
Solve by the method of elimination
2x – y = 3, 3x + y = 7
Solution
2x – y = 3 → (1)
3x + y = 7 → (2)
By adding (1) and (2)
5x + 0 = 10
x = `10/5`
x = 2
Substitute the value of x = 2 in (1)
2(2) – y = 3
4 – y = 3
– y = 3 – 4
– y = –1
y = 1
The value of x = 2 and y = 1
APPEARS IN
RELATED QUESTIONS
Solve the pair of linear (simultaneous) equation by the method of elimination by substitution :
8x + 5y = 9
3x + 2y = 4
Solve the following pair of linear (simultaneous) equation using method of elimination by substitution :
2x - 3y + 6 = 0
2x + 3y - 18 = 0
Solve the following simultaneous equations by the substitution method:
2x + y = 8
3y = 3 + 4x
Solve the following simultaneous equations by the substitution method:
7x - 3y = 31
9x - 5y = 41
Solve the following simultaneous equations by the substitution method:
13 + 2y = 9x
3y = 7x
If a number is thrice the other and their sum is 68, find the numbers.
In a ABC, ∠A = x°, ∠B = (2x - 30)°, ∠C = y° and also, ∠A + ∠B = one right angle. Find the angles. Also, state the type of this triangle.
Samidha and Shreya have pocket money Rs.x and Rs.y respectively at the beginning of a week. They both spend money throughout the week. At the end of the week, Samidha spends Rs.500 and is left with as much money as Shreya had in the beginning of the week. Shreya spends Rs.500 and is left with `(3)/(5)` of what Samidha had in the beginning of the week. Find their pocket money.
Solve by the method of elimination
13x + 11y = 70, 11x + 13y = 74
The monthly income of A and B are in the ratio 3 : 4 and their monthly expenditures are in the ratio 5 : 7. If each saves ₹ 5,000 per month, find the monthly income of each