Advertisements
Advertisements
Question
Solve the following problem :
Identify the random variable as discrete or continuous in each of the following. Identify its range if it is discrete.
An economist is interested in knowing the number of unemployed graduates in the town with a population of 1 lakh.
Solution
Let X = number of unemployed graduates in a town.
Here, X takes only finite values.
∴ X is a discrete r.v.
Range of X = {0, 1, 2, ...., 100000}.
APPEARS IN
RELATED QUESTIONS
The following is the p.d.f. of continuous r.v.
f (x) = `x/8`, for 0 < x < 4 and = 0 otherwise.
Find expression for c.d.f. of X
The following is the p.d.f. of continuous r.v.
f (x) = `x/8` , for 0 < x < 4 and = 0 otherwise.
Find F(x) at x = 0·5 , 1.7 and 5
Choose the correct option from the given alternative:
If the a d.r.v. X has the following probability distribution:
X | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
P(X=x) | k | 2k | 2k | 3k | k2 | 2k2 | 7k2+k |
k =
The p.m.f. of a r.v. X is given by P (X = x) =`("" ^5 C_x ) /2^5` , for x = 0, 1, 2, 3, 4, 5 and = 0, otherwise.
Then show that P (X ≤ 2) = P (X ≥ 3).
F(x) is c.d.f. of discrete r.v. X whose p.m.f. is given by P(x) = `"k"^4C_x` , for x = 0, 1, 2, 3, 4 and P(x) = 0 otherwise then F(5) = _______
Solve the following problem :
Identify the random variable as discrete or continuous in each of the following. Identify its range if it is discrete.
Amount of syrup prescribed by a physician.
Solve the following problem :
Identify the random variable as discrete or continuous in each of the following. Identify its range if it is discrete.
Twelve of 20 white rats available for an experiment are male. A scientist randomly selects 5 rats and counts the number of female rats among them.
Suppose a discrete random variable can only take the values 0, 1, and 2. The probability mass function is defined by
`f(x) = {{:((x^2 + 1)/k"," "for" x = 0"," 1"," 2),(0"," "otherwise"):}`
Find P(X ≥ 1)
A random variable X has the following probability mass function.
x | 1 | 2 | 3 | 4 | 5 |
F(x) | k2 | 2k2 | 3k2 | 2k | 3k |
Find P(X > 3)
The cumulative distribution function of a discrete random variable is given by
F(x) = `{{:(0, "for" - oo < x < 0),(1/2, "for" 0 ≤ x < 1),(3/5, "for" 1 ≤ x < 2),(4/5, "for" 2 ≤ x < 4),(9/5, "for" 3 ≤ x < 4),(1, "for" ≤ x < oo):}`
Find P(X < 3)
Choose the correct alternative:
Two coins are to be flipped. The first coin will land on heads with probability 0.6, the second with Probability 0.5. Assume that the results of the flips are independent and let X equal the total number of heads that result. The value of E[X] is
Choose the correct alternative:
Suppose that X takes on one of the values 0, 1 and 2. If for some constant k, P(X = i) = kP(X = i – 1) for i = 1, 2 and P(X = 0) = `1/7`. Then the value of k is
Choose the correct alternative:
The probability mass function of a random variable is defined as:
x | – 2 | – 1 | 0 | 1 | 2 |
f(x) | k | 2k | 3k | 4k | 5k |
Then E(X ) is equal to:
A bag contains 6 white and 4 black balls. Two balls are drawn at random. The probability that they are of the same colour is ______.
If the c.d.f (cumulative distribution function) is given by F(x) = `(x - 25)/10`, then P(27 ≤ x ≤ 33) = ______.
If A = {x ∈ R : x2 - 5 |x| + 6 = 0}, then n(A) = _____.
X is a continuous random variable with a probability density function
f(x) = `{{:(x^2/4 + k; 0 ≤ x ≤ 2),(0; "otherwise"):}`
The value of k is equal to ______
The c.d.f. of a discrete r.v. x is
x | 0 | 1 | 2 | 3 | 4 | 5 |
F(x) | 0.16 | 0.41 | 0.56 | 0.70 | 0.91 | 1.00 |
Then P(1 < x ≤ 4) = ______