English

The following is the p.d.f. of continuous r.v. f (x) = x8, for 0 < x < 4 and = 0 otherwise. Find expression for c.d.f. of X - Mathematics and Statistics

Advertisements
Advertisements

Question

The following is the p.d.f. of continuous r.v.

f (x) = `x/8`, for 0 < x < 4 and = 0 otherwise.

Find expression for c.d.f. of X

Sum

Solution

Let F(x) be the c.d.f. of X

Then F(x) =` int_(-∞)^x f (x) dx`

=` int_(0)^-∞f (x) dx + int_(0)^xf (x) dx`

= 0+`int_(0)^x x/8 dx`

=`1/8[x^2/2]_0^x`

= `1/8[x^2/2-0] = x^2/16`

∴ F (x) = `x^2/16`

shaalaa.com
Types of Random Variables
  Is there an error in this question or solution?
Chapter 7: Probability Distributions - Exercise 7.2 [Page 239]

APPEARS IN

RELATED QUESTIONS

Suppose error involved in making a certain measurement is continuous r.v. X with p.d.f.

`"f(x)" = {("k"(4 - x^2)      "for –2 ≤ x ≤ 2,"),(0                                 "otherwise".):}`

P(–1 < x < 1)


Given the p.d.f. of a continuous r.v. X ,

f (x) = `x^2 /3` , for –1 < x < 2 and = 0 otherwise

Determine c.d.f. of X hence find P( x < –2)


Given the p.d.f. of a continuous r.v. X ,

f (x) = `x^2/3` , for –1 < x < 2 and = 0 otherwise

Determine c.d.f. of X hence find P(1 < x < 2)


Choose the correct option from the given alternative:

If the a d.r.v. X has the following probability distribution:

X 1 2 3 4 5 6 7
P(X=x) k 2k 2k 3k k2 2k2 7k2+k

k = 


Solve the following :

Identify the random variable as either discrete or continuous in each of the following. Write down the range of it.

An economist is interested the number of unemployed graduate in the town of population 1 lakh.


The p.m.f. of a r.v. X is given by P (X = x) =`("" ^5 C_x ) /2^5` , for x = 0, 1, 2, 3, 4, 5 and = 0, otherwise.

Then show that P (X ≤ 2) = P (X ≥ 3).


F(x) is c.d.f. of discrete r.v. X whose p.m.f. is given by P(x) = `"k"^4C_x` , for x = 0, 1, 2, 3, 4 and P(x) = 0 otherwise then F(5) = _______


Fill in the blank :

The value of continuous r.v. are generally obtained by _______


Solve the following problem :

Identify the random variable as discrete or continuous in each of the following. Identify its range if it is discrete.

A person on high protein diet is interested in the weight gained in a week.


Solve the following problem :

Identify the random variable as discrete or continuous in each of the following. Identify its range if it is discrete.

Twelve of 20 white rats available for an experiment are male. A scientist randomly selects 5 rats and counts the number of female rats among them.


Solve the following problem :

Identify the random variable as discrete or continuous in each of the following. Identify its range if it is discrete.

A highway safety group is interested in the speed (km/hrs) of a car at a check point.


A coin is tossed 10 times. The probability of getting exactly six heads is ______.


Out of 100 people selected at random, 10 have common cold. If five persons selected at random from the group, then the probability that at most one person will have common cold is ______.


Three fair coins are tossed simultaneously. Find the probability mass function for a number of heads that occurred


A six sided die is marked ‘1’ on one face, ‘3’ on two of its faces, and ‘5’ on remaining three faces. The die is thrown twice. If X denotes the total score in two throws, find P(4 ≤ X < 10)


Find the probability mass function and cumulative distribution function of a number of girl children in families with 4 children, assuming equal probabilities for boys and girls


Suppose a discrete random variable can only take the values 0, 1, and 2. The probability mass function is defined by 
`f(x) = {{:((x^2 + 1)/k","  "for"  x = 0","  1","  2),(0","  "otherwise"):}` 
Find cumulative distribution function


The cumulative distribution function of a discrete random variable is given by
F(x) = `{{:(0,  - oo < x < - 1),(0.15, - 1 ≤ x < 0),(0.35, 0 ≤ x < 1),(0.60, 1 ≤ x < 2),(0.85, 2 ≤ x < 3),(1, 3 ≤ x < oo):}`
Find P(X < 1)


A random variable X has the following probability mass function.

x 1 2 3 4 5
F(x) k2 2k2 3k2 2k 3k

Find the value of k


A random variable X has the following probability mass function.

x 1 2 3 4 5
F(x) k2 2k2 3k2 2k 3k

Find P(2 ≤ X < 5)


The cumulative distribution function of a discrete random variable is given by
F(x) = `{{:(0,  "for" - oo < x < 0),(1/2,  "for"  0 ≤ x < 1),(3/5,  "for"  1 ≤ x < 2),(4/5,  "for"  2 ≤ x < 4),(9/5,  "for"  3 ≤ x < 4),(1,  "for"   ≤ x < oo):}`
Find P(X < 3)


The cumulative distribution function of a discrete random variable is given by
F(x) = `{{:(0,  "for" - oo < x < 0),(1/2,  "for"  0 ≤ x < 1),(3/5,  "for"  1 ≤ x < 2),(4/5,  "for"  2 ≤ x < 4),(9/5,  "for"  3 ≤ x < 4),(1,  "for"   ≤ x < oo):}`
Find P(X ≥ 2)


Choose the correct alternative:

A pair of dice numbered 1, 2, 3, 4, 5, 6 of a six-sided die and 1, 2, 3, 4 of a four-sided die is rolled and the sum is determined. Let the random variable X denote this sum. Then the number of elements in the inverse image of 7 is


Choose the correct alternative:

Suppose that X takes on one of the values 0, 1 and 2. If for some constant k, P(X = i) = kP(X = i – 1) for i = 1, 2 and P(X = 0) = `1/7`. Then the value of k is


Choose the correct alternative:

Which of the following is a discrete random variable?
I. The number of cars crossing a particular signal in a day.
II. The number of customers in a queue to buy train tickets at a moment.
III. The time taken to complete a telephone call.


Choose the correct alternative:

The probability mass function of a random variable is defined as:

x – 2 – 1 0 1 2
f(x) k 2k 3k 4k 5k

Then E(X ) is equal to:


A bag contains 6 white and 4 black balls. Two balls are drawn at random. The probability that they are of the same colour is ______.


If the c.d.f (cumulative distribution function) is given by F(x) = `(x - 25)/10`, then P(27 ≤ x ≤ 33) = ______.


A random variable X has the following probability distribution:

X 1 2 3 4
P(X) `1/3` `2/9` `1/3` `1/9`

1hen, the mean of this distribution is ______ 


X is a continuous random variable with a probability density function

f(x) = `{{:(x^2/4 + k;     0 ≤ x ≤ 2),(0;              "otherwise"):}`

The value of k is equal to ______


A card is chosen from a well-shuffled pack of cards. The probability of getting an ace of spade or a jack of diamond is ______.


The c.d.f. of a discrete r.v. X is

X = x -4 -2 -1 0 2 4 6 8
F(x) 0.2 0.4 0.55 0.6 0.75 0.80 0.95 1

Then P(X ≤ 4|X > -1) = ?


A coin is tossed three times. If X denotes the absolute difference between the number of heads and the number of tails then P(X = 1) = ______.


For the following distribution function F(x) of a rv.x.

x 1 2 3 4 5 6
F(x) 0.2 0.37 0.48 0.62 0.85 1

P(3 < x < 5) =


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×