English
Tamil Nadu Board of Secondary EducationHSC Science Class 12

A random variable X has the following probability mass function. x 1 2 3 4 5 F(x) k2 2k2 3k2 2k 3k Find P(2 ≤ X < 5) - Mathematics

Advertisements
Advertisements

Question

A random variable X has the following probability mass function.

x 1 2 3 4 5
F(x) k2 2k2 3k2 2k 3k

Find P(2 ≤ X < 5)

Sum

Solution

P(2 ≤ X < 5) = P(X = 2) + P(X = 3) + P(X = 4)

= `2/36 + 3/36 + 2/6`

= `(2 + 3 + 12)/36 + 17/36`

shaalaa.com
Types of Random Variables
  Is there an error in this question or solution?
Chapter 11: Probability Distributions - Exercise 11.2 [Page 194]

APPEARS IN

Samacheer Kalvi Mathematics - Volume 1 and 2 [English] Class 12 TN Board
Chapter 11 Probability Distributions
Exercise 11.2 | Q 6. (ii) | Page 194

RELATED QUESTIONS

Suppose error involved in making a certain measurement is continuous r.v. X with p.d.f.

f (x) = k `(4 – x^2 )`, for –2 ≤ x ≤ 2 and = 0 otherwise.

P(x > 0)


Suppose error involved in making a certain measurement is continuous r.v. X with p.d.f.

`"f(x)" = {("k"(4 - x^2)      "for –2 ≤ x ≤ 2,"),(0                                 "otherwise".):}`

P(–1 < x < 1)


The following is the p.d.f. of continuous r.v.

f (x) = `x/8`, for 0 < x < 4 and = 0 otherwise.

Find expression for c.d.f. of X


Given the p.d.f. of a continuous r.v. X ,

f (x) = `x^2/ 3` , for –1 < x < 2 and = 0 otherwise

Determine c.d.f. of X hence find P( X > 0)


Choose the correct option from the given alternative:

If the a d.r.v. X has the following probability distribution:

X 1 2 3 4 5 6 7
P(X=x) k 2k 2k 3k k2 2k2 7k2+k

k = 


Solve the following problem :

A player tosses two coins. He wins ₹ 10 if 2 heads appear, ₹ 5 if 1 head appears, and ₹ 2 if no head appears. Find the expected value and variance of winning amount.


Solve the following problem :

Identify the random variable as discrete or continuous in each of the following. Identify its range if it is discrete.

Amount of syrup prescribed by a physician.


The probability distribution of a r.v. X is

X = x -3 -2 -1 0 1
P(X = x) 0.3 0.2 0.25 0.1 0.15

Then F (-1) = ?


A six sided die is marked ‘1’ on one face, ‘3’ on two of its faces, and ‘5’ on remaining three faces. The die is thrown twice. If X denotes the total score in two throws, find the probability mass function


Suppose a discrete random variable can only take the values 0, 1, and 2. The probability mass function is defined by 
`f(x) = {{:((x^2 + 1)/k","  "for"  x = 0","  1","  2),(0","  "otherwise"):}` 
Find cumulative distribution function


The cumulative distribution function of a discrete random variable is given by
F(x) = `{{:(0,  - oo < x < - 1),(0.15, - 1 ≤ x < 0),(0.35, 0 ≤ x < 1),(0.60, 1 ≤ x < 2),(0.85, 2 ≤ x < 3),(1, 3 ≤ x < oo):}`
Find P(X < 1)


The cumulative distribution function of a discrete random variable is given by
F(x) = `{{:(0,  "for" - oo < x < 0),(1/2,  "for"  0 ≤ x < 1),(3/5,  "for"  1 ≤ x < 2),(4/5,  "for"  2 ≤ x < 4),(9/5,  "for"  3 ≤ x < 4),(1,  "for"   ≤ x < oo):}`
Find P(X ≥ 2)


A bag contains 6 white and 4 black balls. Two balls are drawn at random. The probability that they are of the same colour is ______.


The probability distribution of a random variable X is given below.

X = k 0 1 2 3 4
P(X = k) 0.1 0.4 0.3 0.2 0

The variance of X is ______


The c.d.f. of a discrete r.v. X is

X = x -4 -2 -1 0 2 4 6 8
F(x) 0.2 0.4 0.55 0.6 0.75 0.80 0.95 1

Then P(X ≤ 4|X > -1) = ?


A random variable X has the following probability distribution:

X = xi 1 2 3 4
P(X = xi) 0.2 0.15 0.3 0.35

The mean and the variance are respectively ______.


A coin is tossed three times. If X denotes the absolute difference between the number of heads and the number of tails then P(X = 1) = ______.


For the following distribution function F(x) of a rv.x.

x 1 2 3 4 5 6
F(x) 0.2 0.37 0.48 0.62 0.85 1

P(3 < x < 5) =


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×