Advertisements
Advertisements
Question
Suppose error involved in making a certain measurement is continuous r.v. X with p.d.f.
`"f(x)" = {("k"(4 - x^2) "for –2 ≤ x ≤ 2,"),(0 "otherwise".):}`
P(–1 < x < 1)
Solution
Given that f(x) represents a p.d.f. of r.v.X.
∴ `int_(-2)^2 "f(x) dx" = 1`
∴ `int_(-2)^2 "k" (4 − x^2) "dx" = 1`
∴ `"k"[4x − x^3/3]_(-2)^(2) = 1`
∴ `"k"[(8 − 8/3) − (−8 + 8/3)] = 1`
∴ `"k"(16/3 + 16/3) = 1`
∴ `"k"(32/3) = 1`
∴ k = `3/32`
`"F(x)" = int_(-2)^(x) "f(x) dx"`
`= int_(-2)^(x) "k" (4 − x^2) "dx"`
`= 3/32 [4x − x^3/3]_(-2)^(x)`
`= 3/32 [4x − x^3/3 + 8 − 8/3]`
∴ `"F(x)" = 3/32 [4x − x^3/3 + 16/3]`
P(–1 < x < 1)
= F(1) – F(– 1)
= `3/32 (4 – 1/3 + 16/3) – 3/32 (– 4 + 1/3 + 16/3)`
= `3/32 (9 – 5/3)`
= `3/32 (22/3)`
= `11/16`
RELATED QUESTIONS
The following is the p.d.f. of continuous r.v.
f (x) = `x/8`, for 0 < x < 4 and = 0 otherwise.
Find expression for c.d.f. of X
The following is the p.d.f. of continuous r.v.
f (x) = `x/8` , for 0 < x < 4 and = 0 otherwise.
Find F(x) at x = 0·5 , 1.7 and 5
Given the p.d.f. of a continuous r.v. X , f (x) = `x^2/3` ,for –1 < x < 2 and = 0 otherwise
Determine c.d.f. of X hence find
P( x < 1)
Given the p.d.f. of a continuous r.v. X ,
f (x) = `x^2/3` , for –1 < x < 2 and = 0 otherwise
Determine c.d.f. of X hence find P(1 < x < 2)
Solve the following :
Identify the random variable as either discrete or continuous in each of the following. Write down the range of it.
An economist is interested the number of unemployed graduate in the town of population 1 lakh.
The p.m.f. of a r.v. X is given by P (X = x) =`("" ^5 C_x ) /2^5` , for x = 0, 1, 2, 3, 4, 5 and = 0, otherwise.
Then show that P (X ≤ 2) = P (X ≥ 3).
In the p.m.f. of r.v. X
X | 1 | 2 | 3 | 4 | 5 |
P (X) | `1/20` | `3/20` | a | 2a | `1/20` |
Find a and obtain c.d.f. of X.
Solve the following problem :
A player tosses two coins. He wins ₹ 10 if 2 heads appear, ₹ 5 if 1 head appears, and ₹ 2 if no head appears. Find the expected value and variance of winning amount.
It is felt that error in measurement of reaction temperature (in celsius) in an experiment is a continuous r.v. with p.d.f.
f(x) = `{(x^3/(64), "for" 0 ≤ x ≤ 4),(0, "otherwise."):}`
Find probability that X is between 1 and 3..
F(x) is c.d.f. of discrete r.v. X whose p.m.f. is given by P(x) = `"k"^4C_x` , for x = 0, 1, 2, 3, 4 and P(x) = 0 otherwise then F(5) = _______
Fill in the blank :
The value of continuous r.v. are generally obtained by _______
c.d.f. of a discrete random variable X is
The probability distribution of a r.v. X is
X = x | -3 | -2 | -1 | 0 | 1 |
P(X = x) | 0.3 | 0.2 | 0.25 | 0.1 | 0.15 |
Then F (-1) = ?
A coin is tossed 10 times. The probability of getting exactly six heads is ______.
Three fair coins are tossed simultaneously. Find the probability mass function for a number of heads that occurred
A six sided die is marked ‘1’ on one face, ‘3’ on two of its faces, and ‘5’ on remaining three faces. The die is thrown twice. If X denotes the total score in two throws, find P(X ≥ 6)
Suppose a discrete random variable can only take the values 0, 1, and 2. The probability mass function is defined by
`f(x) = {{:((x^2 + 1)/k"," "for" x = 0"," 1"," 2),(0"," "otherwise"):}`
Find P(X ≥ 1)
The cumulative distribution function of a discrete random variable is given by
F(x) = `{{:(0, - oo < x < - 1),(0.15, - 1 ≤ x < 0),(0.35, 0 ≤ x < 1),(0.60, 1 ≤ x < 2),(0.85, 2 ≤ x < 3),(1, 3 ≤ x < oo):}`
Find the probability mass function
The cumulative distribution function of a discrete random variable is given by
F(x) = `{{:(0, - oo < x < - 1),(0.15, - 1 ≤ x < 0),(0.35, 0 ≤ x < 1),(0.60, 1 ≤ x < 2),(0.85, 2 ≤ x < 3),(1, 3 ≤ x < oo):}`
Find P(X ≥ 2)
A random variable X has the following probability mass function.
x | 1 | 2 | 3 | 4 | 5 |
F(x) | k2 | 2k2 | 3k2 | 2k | 3k |
Find the value of k
The cumulative distribution function of a discrete random variable is given by
F(x) = `{{:(0, "for" - oo < x < 0),(1/2, "for" 0 ≤ x < 1),(3/5, "for" 1 ≤ x < 2),(4/5, "for" 2 ≤ x < 4),(9/5, "for" 3 ≤ x < 4),(1, "for" ≤ x < oo):}`
Find P(X ≥ 2)
If Xis a.r.v. with c.d.f F (x) and its probability distribution is given by
X = x | - 1.5 | -0.5 | 0.5 | 1.5 | 2.5 |
P(X = x) | 0.05 | 0.2 | 0.15 | 0.25 | 0.35 |
then, F(1.5) - F(- 0.5) = ?
Choose the correct alternative:
A pair of dice numbered 1, 2, 3, 4, 5, 6 of a six-sided die and 1, 2, 3, 4 of a four-sided die is rolled and the sum is determined. Let the random variable X denote this sum. Then the number of elements in the inverse image of 7 is
Choose the correct alternative:
Two coins are to be flipped. The first coin will land on heads with probability 0.6, the second with Probability 0.5. Assume that the results of the flips are independent and let X equal the total number of heads that result. The value of E[X] is
Choose the correct alternative:
The probability mass function of a random variable is defined as:
x | – 2 | – 1 | 0 | 1 | 2 |
f(x) | k | 2k | 3k | 4k | 5k |
Then E(X ) is equal to:
The p.m.f. of a random variable X is
P(x) = `(5 - x)/10`, x = 1, 2, 3, 4
= 0, otherwise
The value of E(X) is ______
If the c.d.f (cumulative distribution function) is given by F(x) = `(x - 25)/10`, then P(27 ≤ x ≤ 33) = ______.
If the probability function of a random variable X is defined by P(X = k) = a`((k + 1)/2^k)` for k - 0, 1, 2, 3, 4, 5, then the probability that X takes a prime value is ______
A random variable X has the following probability distribution:
X | 1 | 2 | 3 | 4 |
P(X) | `1/3` | `2/9` | `1/3` | `1/9` |
1hen, the mean of this distribution is ______
A card is chosen from a well-shuffled pack of cards. The probability of getting an ace of spade or a jack of diamond is ______.
Two coins are tossed. Then the probability distribution of number of tails is.
The c.d.f. of a discrete r.v. x is
x | 0 | 1 | 2 | 3 | 4 | 5 |
F(x) | 0.16 | 0.41 | 0.56 | 0.70 | 0.91 | 1.00 |
Then P(1 < x ≤ 4) = ______
The c.d.f. of a discrete r.v. X is
X = x | -4 | -2 | -1 | 0 | 2 | 4 | 6 | 8 |
F(x) | 0.2 | 0.4 | 0.55 | 0.6 | 0.75 | 0.80 | 0.95 | 1 |
Then P(X ≤ 4|X > -1) = ?
A coin is tossed three times. If X denotes the absolute difference between the number of heads and the number of tails then P(X = 1) = ______.