English

Solve the following quadratic equation: x2 – (2 + i) x – (1 – 7i) = 0 - Mathematics and Statistics

Advertisements
Advertisements

Question

Solve the following quadratic equation:

x2 – (2 + i) x – (1 – 7i) = 0

Sum

Solution

Given equation is x2 – (2 + i) x – (1 – 7i) = 0
Comparing with ax2 + bx + c = 0, we get
a = 1, b = – (2 + i), c = –(1 – 7i)
Discriminant = b2 – 4ac
= [– (2 + i)]2 – 4 x 1 – (1 – 7i)
= 4 + 4i + i2 + 4 – 28i
= 4 + 4i – 1 + 4 – 28i          ...[∵ i2 = – 1]
= 7 – 24i
So, the given equation has complex roots.
These roots are given by

x = `(-"b" ± sqrt("b"^2 - 4"ac"))/(2"a")`

= `(-[-(2 + "i")] ± sqrt(7 - 24"i"))/(2(1)`

= `((2 + "i") ± sqrt(7 - 24"i"))/2`

Let `sqrt(7 - 24"i")` = a + bi, where a, b ∈ R
Squaring on both sides, we get
7 – 24i = a2 + i2b2 + 2abi
∴ 7 – 24i = (a2 – b2) + 2abi        ...[∵ i2 = – 1]
Equating real and imaginary parts, we get
a2 – b2 = 7 and 2ab = – 24

∴ a2 – b2 = 7 and b = `(-12)/"a"`

∴ `"a"^2 - ((-12)/"a")^2` = 7

∴ `"a"^2 - 144/"a"^2` = 7

∴ a4 – 144 = 7a2
∴ a4 – 7a2 – 144 = 0
∴ (a2 – 16) (a2 + 9) = 0
∴ a2 = 16 or a2 = – 9
But a ∈ R
∴ a2 ≠ – 9
∴ a2 = 16
∴ a = ± 4
When a = 4, b  = `(-12)/4` = – 3

When a = – 4, b = `(-12)/(-4)` = 3

∴ `sqrt(7 - 24"i")` = ± (4 – 3i)

∴ x = `((2 + "i") ± (4 - 3"i"))/2`

∴ x = `((2 + "i") + (4 - 3"i"))/2  or x = ((2 + "i") - (4 - 3"i"))/2`

∴ x = 3 – i or x = – 1 + 2i.

shaalaa.com
Solution of a Quadratic Equation in Complex Number System
  Is there an error in this question or solution?
Chapter 3: Complex Numbers - EXERCISE 3.2 [Page 40]

APPEARS IN

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×