Advertisements
Advertisements
Question
Solve the following simultaneous equations :
6x + 3y = 7xy
3x + 9y = 11xy
Solution
6x + 3y = 7xy
3x + 9y = 11xy
Dividing both sides of each equation by xy, we get,
`(6)/y + (3)/x` = 7 .........(1)
`(3)/y + (9)/x` = 11 .........(2)
Multiplying (2) by 2,
`(6)/y + (18)/x` = 22 ...........(3)
Subtracting (1) from (3), we get,
`(15)/x` = 15
⇒ x = 1
∴ `(3)/y + 9` = 11
⇒ `(3)/y` = 11 - 9 = 2
⇒ y = `(3)/(2)`
Thus, the solution set is `(1, 3/2)`.
APPEARS IN
RELATED QUESTIONS
For solving pair of equation, in this exercise use the method of elimination by equating coefficients :
`[ x - y ]/6 = 2( 4 - x )`
2x + y = 3( x - 4 )
For solving pair of equation, in this exercise use the method of elimination by equating coefficients :
13x+ 11y = 70
11x + 13y = 74
For solving pair of equation, in this exercise use the method of elimination by equating coefficients :
41x + 53y = 135
53x + 41y = 147
Solve for x and y :
`[ y + 7 ]/5 = [ 2y - x ]/4 + 3x - 5`
`[ 7 - 5x ]/2 + [ 3 - 4y ]/6 = 5y - 18`
Solve for x and y:
4x = 17 - `[ x - y ]/8`
2y + x = 2 + `[ 5y + 2 ]/3`
Solve :
`[ 7 + x ]/5 - [ 2x - y ]/4 = 3y - 5`
`[5y - 7]/2 + [ 4x - 3 ]/6 = 18 - 5x`
Solve the following simultaneous equations:
103a + 51b = 617
97a + 49b = 583
Solve the following pairs of equations:
`(2)/(x + 1) - (1)/(y - 1) = (1)/(2)`
`(1)/(x + 1) + (2)/(y - 1) = (5)/(2)`
If 10y = 7x - 4 and 12x + 18y = 1 ; find the value of 4x + 6y and 8y - x.
Anil and Sunita have incomes in the ratio 3 : 5. If they spend in the ratio 1 : 3, each saves T 5000. Find the income of each.