English

Solve the Following System of Linear Equations Graphically : 4x - 5y - 20 = 0 3x + 3y - 15 = 0 Determine the Vertices of the Triangle Formed by the Lines, Represented by the Above Equations and - Mathematics

Advertisements
Advertisements

Question

Solve the following system of linear equations graphically :
4x - 5y - 20 = 0
3x + 3y - 15 = 0
Determine the vertices of the triangle formed by the lines, represented by the above equations and the y-axis.

Graph
Sum

Solution

4x - 5y - 20 = 0   ...(1)
3x + 3y - 15 = 0  ...(2)

4x - 5y - 20 = 0
⇒ 4x = 5y + 20
Corresponding values of x and y can be tabulated as :

x 0 -5 5
y -4 -8 0

Plotting points (0, -4), (-5, -8), (5, 0) and joining them, we get a line l1 which is the graph of equation (1).

Again, 3x + 3y - 15 = 0
⇒ x + y - 5 = 0
⇒ x+ y = 5
Corresponding values of x and y can be tabulated as :

x 0 -5 5
y -4 -8 0

Plotting points (0, 5), (5, 0), (2, 3) and joining them, we get a line l2 which is the graph of equation (2).

The lines l1 and l2 intersect at (5, 0). Thus, the solution of equations (1) and (2) is x = 5 and y = 0.
Now, it can be seen that ΔABC is formed by the two lines l1 and l2 and the y-axis.
The vertices of ΔABC is A(0, 5), B(5, 0) and C(0, -4).

shaalaa.com
  Is there an error in this question or solution?
Chapter 8: Simultaneous Linear Equations - Exercise 8.2

APPEARS IN

Frank Mathematics [English] Class 9 ICSE
Chapter 8 Simultaneous Linear Equations
Exercise 8.2 | Q 9
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×