Advertisements
Advertisements
Question
Some school children went on an excursion by a bus to a picnic spot at a distance of 300 km. While returning, it was raining and the bus had to reduce its speed by 5 km/hr and it took two hours longer for returning. Find the time taken to return.
Solution
Distance = 300 km
Let the original speed of the bus be x km/hr
While returning, speed of the bus = (x – 5) km/hr
From the given information, we have
`300/(x - 5) - 300/x = 2`
`(300x - 300x + 1500)/(x(x - 5)) = 2`
`750/(x(x - 5)) = 1`
x2 – 5x – 750 = 0
x2 – 30x + 25x – 750 = 0
x(x – 30) + 25(x – 30) = 0
(x – 30)(x + 25) = 0
x = 30, –25
Since, speed cannot be negative.
So, x = 30.
Speed of the bus while returning = 25 km/hr.
Time taken by the bus to return = `300/25` hrs = 12 hrs.
APPEARS IN
RELATED QUESTIONS
The speed of an ordinary train is x km per hr and that of an express train is (x + 25) km per hr.
- Find the time taken by each train to cover 300 km.
- If the ordinary train takes 2 hrs more than the express train; calculate speed of the express train.
If the speed of a car is increased by 10 km per hr, it takes 18 minutes less to cover a distance of 36 km. Find the speed of the car.
If the speed of an aeroplane is reduced by 40 km/hr, it takes 20 minutes more to cover 1200 km. Find the speed of the aeroplane.
A girl goes to her friend’s house, which is at a distance of 12 km. She covers half of the distance at a speed of x km/hr and the remaining distance at a speed of (x + 2) km/hr. If she takes 2 hrs 30 minutes to cover the whole distance, find ‘x’.
The distance by road between two towns A and B is 216 km and by rail it is 208 km. A car travels at a speed of x km/hr and the train travels at a speed which is 16 km/hr faster than the car. Calculate:
- the time taken by the car to reach town B from A, in terms of x;
- the time taken by the train to reach town B from A, in terms of x.
- If the train takes 2 hours less than the car, to reach town B, obtain an equation in x and solve it.
- Hence, find the speed of the train.
A plane left 30 minutes later than the schedule time and in order to reach its destination 1500 km away in time, it has to increase its speed by 250 km/hr from its usual speed. Find its usual speed.
Two trains leave a railway station at the same time. The first train travels due west and the second train due north. The first train travels 5 km/hr faster than the second train. If after 2 hours, they are 50 km apart, find the speed of each train.
An aeroplane travelled a distance of 400 km at an average speed of x km/hr. On the return journey, the speed was increased by 40 km/hr. Write down an expression for the time taken for:
- the onward journey;
- the return journey.
If the return journey took 30 minutes less than the onward journey, write down an equation in x and find its value.
A man covers a distance of 100 km, travelling with a uniform speed of x km/hr. Had the speed been 5 km/hr more it would have taken 1 hour less. Find x the original speed.
The speed of a boat in still water is 15 km/h and speed of stream is 5 km/h. The boat goes x km downstream and then returns back to the point of start is ______.