Advertisements
Advertisements
Question
State and explain Hess’s law of constant heat summation.
Solution
Hess’s law of constant heat summation states that, “Overall the enthalpy change for a reaction is equal to sum of enthalpy changes of individual steps in the reaction”.
Explanation:
- The enthalpy change for a chemical reaction is the same regardless of the path by which the reaction occurs. Hess’s law is a direct consequence of the fact that enthalpy is a state function. The enthalpy change of a reaction depends only on the initial and final states and not on the path by which the reaction occurs.
- To determine the overall equation of reaction, reactants and products in the individual steps are added or subtracted like algebraic entities.
- Consider the synthesis of NH3,
1. | \[\ce{2H_{2(g)} + N_{2(g)} -> N2H_{4(g)}}\], | `Delta_"r""H"_1^0` = +95.4 kJ |
2. | \[\ce{N2H_{4(g)} + H_{2(g)} -> 2NH_{3(g)}}\], | `Delta_"r""H"_2^0` = −187.6 kJ |
\[\ce{3H_{2(g)} + N_{2(g)} -> 2NH_{3(g)}}\], | ∆rH° = – 92.2 kJ |
The sum of the enthalpy changes for steps (1) and (2) is equal to enthalpy change for the overall reaction.
APPEARS IN
RELATED QUESTIONS
Answer the following question.
Calculate ΔrH° for the following reaction at 298 K:
1) 2H3BO3(aq) → B2O3(s) + 3H2O(l), ΔrH° = + 14.4 kJ
2) H3BO3(aq) → HBO2(aq) + H2O(l), ΔrH° = - 0.02 kJ
3) H2B4O7(s) → 2B2O3(s) + H2O(l), ΔrH° = + 17.3 kJ
Calculate the total heat required
a) to melt 180 g of ice at 0 °C
b) heat it to 100 °C and then
c) vapourise it at that temperature.
[Given: ΔfusH° (ice) = 6.01 kJ mol-1 at 0 °C, ΔvapH° (H2O) = 40.7 kJ mol-1 at 100 °C, Specific heat of water is 4.18 J g-1 K-1]
The enthalpy change for the reaction, \[\ce{C2H4_{(g)} + H2_{(g)} -> C2H6_{(g)}}\] is −620 J when 100 mL of ethylene and 100 ml of \[\ce{H2}\] react at 1 bar pressure. Calculate the pressure volume type of work and ΔU for the reaction.
Define the Standard enthalpy of combustion.
The enthalpy change of the following reaction:
\[\ce{CH_{4(g)} + Cl_{2(g)} -> CH3Cl_{(g)} + HCl_{(g)}ΔH^0 = –104 kJ}\]
Calculate C – Cl bond enthalpy. The bond enthalpies are:
Bond | C − H | Cl − Cl | H − Cl |
∆H°/kJ mol−1 | 414 | 243 | 431 |
Calculate the standard enthalpy of the reaction.
\[\ce{2Fe_{(s)} + \frac{3}{2} O_{2(g)} -> Fe2O_{3(s)}}\]
Given:
1. | \[\ce{2Al_{(s)} + Fe2O_{3(s)} -> 2Fe_{(s)} + Al_2O_{3(s)}}\], | ∆rH° = –847.6 kJ |
2. | \[\ce{2Al_{(s)} + \frac{3}{2} O_{2(g)} -> Al2O_{3(s)}}\], | ∆rH° = –1670 kJ |
Define the Enthalpy of ionisation.
Classify the following into intensive and extensive properties.
Pressure, volume, mass, temperature.
A compound that has a high negative heat of formation is normally ____________.
When 6.0 g of graphite reacts with dihydrogen to give methane gas, 37.4 kJ of heat is liberated. What is standard enthalpy of formation of CH4 (g)?
The standard heats of formation in kcal mol−1 of NO2(g) and N2O4(g) are 8.0 and 2.0 respectively. The heat of dimerization of NO2 in kcal is ____________.
\[\ce{2NO2_{(g)} ⇌ N2O4_{(g)}}\]
lf, \[\ce{C_{(s)} + O2_{(g)} -> CO2_{(g)}}\], ∆H = x .........(i)
\[\ce{CO_{(g)} + 1/2O2_{(g)} -> CO2_{(g)}}\], ∆H = y .......(ii)
Then, the heat of formation of CO is:
\[\ce{S + 3/2O2 -> SO3 +2{x} kcal}\] .........(i)
\[\ce{SO2 + 1/2O2 -> SO3 + {y} kcal}\] .......(ii)
The heat of formation of SO2 is ____________.
Which of the following compounds is Not present in its standard state at 25°C and 1 atmosphere pressure?
Given the reaction,
\[\ce{CH2O_{(g)} + O2_{(g)} -> CO2_{(g)} + H2O_{(g)}}\] ΔH = −527 kJ
How much heat will be evolved in the formation of 60 g of CO2?
Calculate the enthalpy of hydrogenation of C2H4(g), given that the enthalpy of formation of ethane and ethylene are −30.2 kcal and +12.5 kcal respectively.
Combustion of glucose takes place as
\[\ce{C6H12O6_{(s)} + 6O2_{(g)} -> 6CO2_{(g)} + 6H2O_{(g)}}\]; ΔH = −72 kcal mol−1
The energy needed for the production of 1.8 g of glucose by photosynthesis will be ___________.
Given that,
\[\ce{C_{(s)} + O_{2(g)} -> CO_{2(g)}}\] ΔH° = -X kJ
\[\ce{2CO_{(g)} + O_{2(g)} -> 2CO_{2(g)}}\] ΔH° = - Y kJ, then standard enthalpy of formation of carbon monoxide is ________.
An ideal gas expands isothermally and reversibly from 10 m3 to 20 m3 at 300 K performing 5 .187 kJ of work on surrounding. Calculate number of moles of gas undergoing expansion. (R = 8.314 J K-1 mol-1)
Heat of formation of ethane, ethylene acetylene and carbon dioxide are - 136, - 66, - 228 and - 395 (all in kJ) respectively, most stable among them is ______.
\[\ce{A -> B}\], ∆H = −10 kJ mol−1, Ea(f) = 50 kJ mol−1, then Ea of \[\ce{B -> A}\] will be ______.
When the enthalpy of combustion of carbon to carbon dioxide is - 360 kJ mol-1, then the enthalpy change for the formation of 18 g of CO2 from carbon and dioxygen at the same temperature in kJ will be ______.
Define and explain the term, enthalpy of reaction.
Which of the following reactions defines the enthalpy of formation?
Heat of combustion of methane is - 890 kJ/mol. On combustion of 12 gm of methane in excess of oxygen, ______ heat is evolved.
For the reaction, aA + bB → cC + dD, write the expression for enthalpy change of reaction in terms of enthalpies of formation of reactants and products.
Heat of combustion of CH4(g) is -890 kJ/mole. What is the value of Δc H of 8gm of methane?