Advertisements
Advertisements
Question
सत्यापित कीजिए कि निम्नलिखित में से प्रत्येक एक AP है और फिर उसके अगले तीन पद लिखिए :
`sqrt(3), 2sqrt(3), 3sqrt(3),...`
Solution
यहाँ,
a1 = `sqrt(3)`
a2 = `2sqrt(3)`
a3 = `3sqrt(3)`
a2 – a1 = `2sqrt(3) - sqrt(3) = sqrt(3)`
a3 – a2 = `3sqrt(3) - 2sqrt(3) = sqrt(3)`
∵ a2 – a1 = a3 – a2 = `sqrt(3)`
चूँकि, क्रमिक पदों का अंतर बराबर है,
अतः, `sqrt(3), 2sqrt(3), 3sqrt(3),...` सामान्य अंतर वाला एक AP है `sqrt(3)`
इसलिए, अगले तीन पद होंगे,
a4 = a1 + 3d
= `sqrt(3) + 3(sqrt(3))`
= `4sqrt(3)`
a5 = a1 + 4d
= `sqrt(3) + 4sqrt(3)`
= `5sqrt(3)`
a6 = a1 + 5d
= `sqrt(3) + 5sqrt(3)`
= `6sqrt(3)`
APPEARS IN
RELATED QUESTIONS
निम्नलिखित A.P. है या नहीं? यदि कोई A.P. है, तो इसका सार्व अंतर ज्ञात कीजिए और इनके तीन और पद लिखिए:
`2, 5/2, 3, 7/2,....`
निम्नलिखित A.P. है या नहीं? यदि कोई A.P. है, तो इसका सार्व अंतर ज्ञात कीजिए और इनके तीन और पद लिखिए:
a, 2a, 3a, 4a,...
निम्नलिखित A.P. है या नहीं? यदि कोई A.P. है, तो इसका सार्व अंतर ज्ञात कीजिए और इनके तीन और पद लिखिए:
`sqrt3, sqrt6, sqrt9, sqrt12,...`
निम्नलिखित A.P. है या नहीं? यदि कोई A.P. है, तो इसका सार्व अंतर ज्ञात कीजिए और इनके तीन और पद लिखिए:
12, 32, 52, 72,...
किसी A.P. का प्रथम पद 5, अंतिम पद 45 और योग 400 है। पदों की संख्या और सार्व अंतर ज्ञात कीजिए।
निम्नलिखित में कौन एक AP बनाते हैं? अपने उत्तर का औचित्य दीजिए।
0, 2, 0, 2,...
निम्नलिखित में कौन एक AP बनाते हैं? अपने उत्तर का औचित्य दीजिए।
1, 1, 2, 2, 3, 3,...
दो समांतर श्रेढ़ियों का एक ही सार्व अंतर है। एक समांतर श्रेढ़ी का प्रथम पद 2 है और दूसरी का प्रथम पद 7 है। उनके दसवें पदों का अंतर वही है जो उनके 21 वें पदों का अंतर है और यह वही है जो उनके किन्हीं दो संगत पदों का अंतर है। क्यों ?
सत्यापित कीजिए कि निम्नलिखित में से प्रत्येक एक AP है और फिर उसके अगले तीन पद लिखिए :
a, 2a + 1, 3a + 2, 4a + 3,...
किसी त्रिभुज के कोण एक AP में हैं। सबसे बड़ा कोण सबसे छोटे कोण का दुगुना है। त्रिभुज के सभी कोण ज्ञात कीजिए।