Advertisements
Advertisements
Question
The AC voltage across a resistance can be measured using
Options
a potentiometer
a hot-wire voltmeter
a moving-magnet galvanometer
Solution
a hot-wire voltmeter
Only a hot-wire voltmeter can be used to measure an AC voltage across a resistor.
APPEARS IN
RELATED QUESTIONS
A 2 µF capacitor, 100 Ω resistor and 8 H inductor are connected in series with an AC source.
(i) What should be the frequency of the source such that current drawn in the circuit is maximum? What is this frequency called?
(ii) If the peak value of e.m.f. of the source is 200 V, find the maximum current.
(iii) Draw a graph showing variation of amplitude of circuit current with changing frequency of applied voltage in a series LRC circuit for two different values of resistance R1 and R2 (R1 > R2).
(iv) Define the term 'Sharpness of Resonance'. Under what condition, does a circuit become more selective?
When an AC source is connected to a capacitor, there is a steady-state current in the circuit. Does it mean that the charges jump from one plate to the other to complete the circuit?
A transformer is designed to convert an AC voltage of 220 V to an AC voltage of 12 V. If the input terminals are connected to a DC voltage of 220 V, the transformer usually burns. Explain.
A capacitor acts as an infinite resistance for ______.
The peak voltage of a 220 V AC source is
A transformer has 50 turns in the primary and 100 in the secondary. If the primary is connected to a 220 V DC supply, what will be the voltage across the secondary?
Compare resistance and reactance.
Suppose the initial charge on the capacitor is 6 mC. What is the total energy stored in the circuit initially? What is the total energy at later time?
Average power supplied to a capacitor over one complete cycle is ______.
A.C. power is transmitted from a power house at a high voltage as ______.
A capacitor has capacitance C and reactance X, if capacitance and frequency become double, then reactance will be ______.
An alternating current of 1.5 mA and angular frequency 300 rad/sec flows through a 10 k Ω resistor and a 0.50 µF capacitor in series. Find the rms voltage across the capacitor and impedance of the circuit.
Explain why the reactance provided by a capacitor to an alternating current decreases with increasing frequency.
An a.c. source generating a voltage ε = ε0 sin ωt is connected to a capacitor of capacitance C. Find the expression for the current I flowing through it. Plot a graph of ε and I versus ωt to show that the current is ahead of the voltage by π/2.