Advertisements
Advertisements
Question
The coefficient of correlation between the values denoted by X and Y is 0.5. The mean of X is 3 and that of Y is 5. Their standard deviations are 5 and 4 respectively.
Find:
(i) the two lines of regression.
(ii) the expected value of Y, when X is given 14.
(iii) the expected value of X, when Y is given 9.
Solution
`barx = 3, bary = 5, σ_x = 5, σ_y = 4, r = 0.5`
byx = `r. (σ_y)/(σ_x) = 0.5 xx (4)/(5) = 0.4`,
bxy = `r. (σ_x)/(σ_y) = 0.5 xx (5)/(4) = 0.625`
(i) Regression equation,
`y - bary = b_(yx) ( x - barx)`
y - 5 = (0.4) (x - 3)
y = 0.4x + 3.8
`x - barx = b_(xy) ( y - bary)`
x - 3 = (0.625) (y - 5)
x = 0.625y - 0.125
Thus two lines of regression are y = 0.4x + 3.8 and x = 0.625y - 0.125.
(ii)
x = 14
y = 0.4 x 14 + 3.8
= 5.6 + 3.8 = 9.4
Thus, the expected value of Y, when X = 14 is 9.4
(iii)
y = 9
x = 0.625 x 9 - 0.125 = 5.625 - 0.125 = 5.5
Thus, the expected value of X, when Y = 9 is 5.5
APPEARS IN
RELATED QUESTIONS
The two lines of regressions are 4x + 2y- 3 = 0 and 3x + 6y + 5 =0. Find the correlation co-efficient between x and y.
In a contest, the competitors are awarded marks out of 20 by two judges. The scores of the 10 competitors are given below. Calculate Spearman's rank correlation.
Competitors | A | B | C | D | E | F | G | H | I | J |
Judge A | 2 | 11 | 11 | 18 | 6 | 5 | 8 | 16 | 13 | 15 |
Judge B | 6 | 11 | 16 | 9 | 14 | 20 | 4 | 3 | 13 | 17 |
Examine whether the following statement pattern is tautology, contradiction or contingency :
p ∨ – (p ∧ q)
The regression equation of y on x is given by 3x + 2y - 26 = O. Find byx.
Bring out the inconsistency; if any: byx + bxy = 1.30. and r = 0.75
Bring out the inconsistency, if any in the following :
bYX + bXY = 1.30 and r = 0.75
Bring out the inconsistency, if any in the following :
bYX = 1.9 and bXY = -0.25
Bring out the inconsistency, if any in the following :
bYX = 2.6 and bXY = `1/2.6`
For a bivariate data,
`bar x = 53 , bar y = 28 , "b"_"xy" = - 0.2` , `"b"_"yx" = -1.5` Find
Estimate of Y , When X = 50.
For a bivariate data,
`bar x = 53 , bar y = 28 , "b"_"yx"=-1.5 and "b"_"xy"=- 0.2` Find Estimate of X for y = 25.
From the data 7 pairs of observations on X and Y following results are obtained :
∑(xi - 70) = - 38 ; ∑ (yi - 60) = - 5 ;
∑ (xi - 70)2 = 2990 ; ∑ (yi - 60)2 = 475 ;
∑ (xi - 70) (yi - 60) = 1063
Obtain :
(a) The line of regression of Y on X.
(b) The line of regression of X on Y.
Values of two regression coefficients between the variables X and Y are `b_"yx" = - 0.4` and `b_"xy"` = - 2.025 respectively. Obtain the value of correlation coefficient.
For the two regression equations 4y = 9x + 15 and 25x = 6y + 7 find correlation coefficient r, `barx, bary`
Let X be the number of matches played by the player and Y he the number of matches in which he scored more thun 50 runs. The following data is obtained for 5 players :
No. of Matches Played (X) | Data of matches of 5 players | ||||
21 | 25 | 26 | 24 | 19 | |
Scored more than 50 in a match (Y) | 19 | 20 | 24 | 21 | 16 |
Find the regression line of X on Y.
Find the line of best fit for the following data, treating x as the dependent variable (Regression equation x on y):
X | 14 | 12 | 13 | 14 | 16 | 10 | 13 | 12 |
Y | 14 | 23 | 17 | 24 | 18 | 25 | 23 | 24 |
Hence, estimate the value of x when y = 16.
If the regression line of x on y is, 9x + 3y − 46 = 0 and y on x is, 3x + 12y − 7 = 0, then the correlation coefficient ‘r’ is equal to:
For 5 observations of pairs (x, y) of variables X and Y, the following results are obtained:
∑x = 15, ∑y = 25, ∑x2 = 55, ∑y2 = 135, ∑xy = 83.
Calculate the value of bxy and byx.
The following table shows the Mean, the Standard Deviation and the coefficient of correlation of two variables x and y.
Series | x | y |
Mean | 8 | 6 |
Standard deviation | 12 | 4 |
Coefficient of correlation | 0.6 |
Calculate:
- the regression coefficient bxy and byx
- the probable value of y when x = 20
If the correlation coefficient of two sets of variables (X, Y) is `(-3)/4`, which one of the following statements is true for the same set of variables?
Mean of x = 53, mean of y = 28 regression co-efficient y on x = −1.2, regression co-efficient x on y = −0.3. Find coefficient of correlation (r).
The random variables have regression lines 3x + 2y − 26 = 0 and 6x + y − 31 = 0. Calculate co-efficient of correlations.