English

The Coefficient of Correlation Between the Values Denoted by X and Y is 0.5 the Mean of X is 3 and that of Y is 5 Their Standard Deviations Are 5 and 4 Respectively - Mathematics

Advertisements
Advertisements

Question

The coefficient of correlation between the values denoted by X and Y is 0.5. The mean of X is 3 and that of Y is 5. Their standard deviations are 5 and 4 respectively.
Find:
(i) the two lines of regression.
(ii) the expected value of Y, when X is given 14.
(iii) the expected value of X, when Y is given 9.

Sum

Solution

`barx = 3, bary = 5, σ_x = 5, σ_y = 4, r = 0.5`

byx = `r. (σ_y)/(σ_x) = 0.5 xx (4)/(5) = 0.4`,

bxy = `r. (σ_x)/(σ_y) = 0.5 xx (5)/(4) = 0.625`

(i) Regression equation,

`y - bary = b_(yx)  ( x - barx)`
y - 5 = (0.4) (x - 3)
y = 0.4x + 3.8

`x - barx = b_(xy)  ( y - bary)`
x - 3 = (0.625) (y - 5)
x = 0.625y - 0.125

Thus two lines of regression are y = 0.4x + 3.8 and x = 0.625y - 0.125.

(ii) 
x = 14
y = 0.4 x 14 + 3.8
= 5.6 + 3.8 = 9.4

Thus, the expected value of Y, when X = 14 is 9.4

(iii) 
y = 9
x = 0.625 x 9 - 0.125 = 5.625 - 0.125 = 5.5

Thus, the expected value of X, when Y = 9 is 5.5

shaalaa.com
Regression Coefficient of X on Y and Y on X
  Is there an error in this question or solution?
2013-2014 (March)

APPEARS IN

RELATED QUESTIONS

The two lines of regressions are 4x + 2y- 3 = 0 and 3x + 6y + 5 =0. Find the correlation co-efficient between x and y.


In a contest, the competitors are awarded marks out of 20 by two judges. The scores of the 10 competitors are given below. Calculate Spearman's rank correlation.

Competitors A B C D E F G H I J
Judge A 2 11 11 18 6 5 8 16 13 15
Judge B 6 11 16 9 14 20 4 3 13 17

Examine whether the following statement pattern is tautology, contradiction or contingency :
p ∨ – (p ∧ q)


The regression equation of y on x is given by 3x + 2y - 26 = O. Find byx.


Bring out the inconsistency; if any: byx + bxy = 1.30. and r = 0.75 


Bring out the inconsistency, if any in the following : 

bYX + bXY = 1.30 and r = 0.75


Bring out the inconsistency, if any in the following : 

bYX  = 1.9 and bXY = -0.25


Bring out the inconsistency, if any in the following : 

bYX = 2.6 and bXY  = `1/2.6`


For a bivariate data, 

`bar x = 53 , bar y = 28 , "b"_"xy" = - 0.2` , `"b"_"yx" = -1.5` Find 

 Estimate of Y , When X = 50. 


For a bivariate data, 

`bar x = 53 , bar y = 28 , "b"_"yx"=-1.5 and "b"_"xy"=- 0.2` Find Estimate of X for y = 25. 


From the data 7 pairs of observations on X and Y following results are obtained :

∑(xi - 70) = - 38 ; ∑ (yi - 60) = - 5 ;

∑ (xi - 70)2 = 2990 ; ∑ (yi - 60)2 = 475 ;

∑ (xi - 70) (yi - 60) = 1063

Obtain :

(a) The line of regression of Y on X.

(b) The line of regression of X on Y. 


Values of two regression coefficients between the variables X and Y are `b_"yx" = - 0.4` and `b_"xy"` = - 2.025 respectively. Obtain the value of correlation coefficient. 


For the two regression equations 4y = 9x + 15 and 25x = 6y + 7 find correlation coefficient r, `barx, bary`


Let X be the number of matches played by the player and Y he the number of matches in which he scored more thun 50 runs. The following data is obtained for 5 players : 

No. of Matches Played (X)  Data of matches of 5 players
21 25 26 24 19
Scored more than 50 in a match (Y) 19 20 24 21 16

Find the regression line of X on Y. 


Find the line of best fit for the following data, treating x as the dependent variable (Regression equation x on y): 

X 14 12 13 14 16 10 13 12
Y 14 23 17 24 18 25 23 24

Hence, estimate the value of x when y = 16.


If the regression line of x on y is, 9x + 3y − 46 = 0 and y on x is, 3x + 12y − 7 = 0, then the correlation coefficient ‘r’ is equal to:


For 5 observations of pairs (x, y) of variables X and Y, the following results are obtained:

∑x = 15, ∑y = 25, ∑x2 = 55, ∑y2 = 135, ∑xy = 83.

Calculate the value of bxy and byx.


The following table shows the Mean, the Standard Deviation and the coefficient of correlation of two variables x and y.

Series x y
Mean 8 6
Standard deviation 12 4
Coefficient of correlation 0.6

Calculate:

  1. the regression coefficient bxy and byx
  2. the probable value of y when x = 20

If the correlation coefficient of two sets of variables (X, Y) is `(-3)/4`, which one of the following statements is true for the same set of variables?


Mean of x = 53, mean of y = 28 regression co-efficient y on x = −1.2, regression co-efficient x on y = −0.3. Find coefficient of correlation (r).


The random variables have regression lines 3x + 2y − 26 = 0 and 6x + y − 31 = 0. Calculate co-efficient of correlations.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×