Advertisements
Advertisements
Question
The energy of a photon of wavelength λ is ______.
Options
hc λ
`(hc)/lambda`
`lambda/(hc)`
`(lambdah)/c`
Solution
The energy of a photon of wavelength λ is `underlinebb((hc)/lambda)`.
Explanation:
The energy of a photon is given by,
E = hν
h = Planck's constant, ν (frequency) = `c/lambda`
So, `E = (hc)/lambda`
RELATED QUESTIONS
The energy flux of sunlight reaching the surface of the earth is 1.388 × 103 W/m2. How many photons (nearly) per square metre are incident on the Earth per second? Assume that the photons in the sunlight have an average wavelength of 550 nm.
Monochromatic light of wavelength 632.8 nm is produced by a helium-neon laser. The power emitted is 9.42 mW.
(a) Find the energy and momentum of each photon in the light beam,
(b) How many photons per second, on average, arrive at a target irradiated by this beam? (Assume the beam to have uniform cross-section which is less than the target area), and
(c) How fast does a hydrogen atom have to travel in order to have the same momentum as that of the photon?
A 100 W sodium lamp radiates energy uniformly in all directions. The lamp is located at the centre of a large sphere that absorbs all the sodium light which is incident on it. The wavelength of the sodium light is 589 nm.
(a) What is the energy per photon associated with the sodium light?
(b) At what rate are the photons delivered to the sphere?
(a) An X-ray tube produces a continuous spectrum of radiation with its short wavelength end at 0.45 Å. What is the maximum energy of a photon in the radiation?
(b) From your answer to (a), guess what order of accelerating voltage (for electrons) is required in such a tube?
In interaction of radiation with matter, radiation behaves as if it is made up of particles called ______.
The number of photons per second on an average emitted by the source of monochromatic light of wavelength 600 nm, when it delivers the power of 3.3 × 10−3 watts will be ______ (h = 6.6 × 10−34 Js).
The number of photons per second on an average emitted by the source of monochromatic light of wavelength 600 nm, when it delivers the power of 3.3 × 10−3 watts will be ______ (h = 6.6 × 10−34 Js)
Photons absorbed in matter are converted to heat. A source emitting n photon/sec of frequency ν is used to convert 1 kg of ice at 0°C to water at 0°C. Then, the time T taken for the conversion ______.
- decreases with increasing n, with ν fixed.
- decreases with n fixed, ν increasing.
- remains constant with n and ν changing such that n ν = constant.
- increases when the product n ν increases.
There are two sources of light, each emitting with a power of 100 W. One emits X-rays of wavelength 1 nm and the other visible light at 500 nm. Find the ratio of number of photons of X-rays to the photons of visible light of the given wavelength?
The energy of a photon of wavelength 663 nm is ______.