Advertisements
Advertisements
Question
The following are the marks (out of 100) of 60 students in mathematics.
16, 13, 5, 80, 86, 7, 51, 48, 24, 56, 70, 19, 61, 17, 16, 36, 34, 42, 34, 35, 72, 55, 75, 31, 52, 28, 72, 97, 74, 45, 62, 68, 86, 35, 85, 36, 81, 75, 55, 26, 95, 31, 7, 78, 92, 62, 52, 56, 15, 63, 25, 36, 54, 44, 47, 27, 72, 17, 4, 30.
Construct a grouped frequency distribution table with width 10 of each class, in such a way that one of the classes is 10 – 20 (20 not included).
Solution
We arrange the given data into groups like 0 – 10, 10 – 20, 20 – 30 in which upper-class limit is not included in that class. The class width in each case is 10.
The frequency distribution of the given data is given below:
Class interval | Tally marks | Frequency |
0 – 10 | `bb|bb|bb|bb|` | 4 |
10 – 20 | `\cancel(bb|bb|bb|bb|) bb|bb|` | 7 |
20 – 30 | `\cancel(bb|bb|bb|bb|)` | 5 |
30 – 40 | `bb|bb|bb|bb| bb|bb|bb|bb|` | 10 |
40 – 50 | `bb|bb|bb|bb|` | 5 |
50 – 60 | `bb|bb|bb|bb| bb|bb|bb|` | 8 |
60 – 70 | `bb|bb|bb|bb|` | 5 |
70 – 80 | `bb|bb|bb|bb| bb|bb|bb|` | 8 |
80 – 90 | `bb|bb|bb|bb|` | 5 |
90 – 100 | `bb|bb|bb|` | 3 |
APPEARS IN
RELATED QUESTIONS
The heights of 50 students, measured to the nearest centimeters, have been found to be as follows:-
161 | 150 | 154 | 165 | 168 | 161 | 154 | 162 | 150 | 151 |
162 | 164 | 171 | 165 | 158 | 154 | 156 | 172 | 160 | 170 |
153 | 159 | 161 | 170 | 162 | 165 | 166 | 168 | 165 | 164 |
154 | 152 | 153 | 156 | 158 | 162 | 160 | 161 | 173 | 166 |
161 | 159 | 162 | 167 | 168 | 159 | 158 | 153 | 154 | 159 |
(i) Represent the data given above by a grouped frequency distribution table, taking the class intervals as 160 - 165, 165 - 170, etc.
(ii) What can you conclude bout their heights from the table?
Thirty children were asked about the number of hours they watched TV programmes in the previous week. The results were found as follows:-
1 | 6 | 2 | 3 | 5 | 12 | 5 | 8 | 4 | 8 |
10 | 3 | 4 | 12 | 2 | 8 | 15 | 1 | 17 | 6 |
3 | 2 | 8 | 5 | 9 | 6 | 8 | 7 | 14 | 12 |
(i) Make a grouped frequency distribution table for this data, taking class width 5 and one of the class intervals as 5 - 10.
(ii) How many children watched television for 15 or more hours a week?
The blood groups of 30 students of class VIII are recorded as follows:
A, B, O, O, AB, O, A, O, B, A, O, B, A, O, O, A, AB, O, A, A, O, O, AB, B, A, O, B, A, B,O
Represent this data in the form of a frequency distribution table. Find out which is the most Common and which is the rarest blood group among these students.
Thirty children were asked about the number of hours they watched T.V. programmers in the previous week. The results were found as follows:
1 | 6 | 2 | 3 | 5 | 12 | 5 | 8 | 4 | 8 |
10 | 3 | 4 | 12 | 2 | 8 | 15 | 1 | 17 | 6 |
3 | 2 | 8 | 5 | 9 | 6 | 8 | 7 | 14 | 12 |
(i) Make a grouped frequency distribution table for this data, taking class width 5 and one of the class intervals as 5 – 10.
(ii)How many children watched television for 15 or more hours a week?
In a frequency distribution, the mid-value of a class is 15 and the class intervals is 4. The lower limit of the class is
The mid-value of a class interval is 42. If the class size is 10, then the upper and lower limits of the class are:
The number of times a particular item occurs in a given data is called its
Tallys are usually marked in a bunch of
The blood groups of 30 students are recorded as follows:
A, B, O, A, AB, O, A, O, B, A, O, B, A, AB, B, A, AB, B, A, A, O, A, AB, B, A, O, B, A, B, A
Prepare a frequency distribution table for the data.
The following are the marks (out of 100) of 60 students in mathematics.
16, 13, 5, 80, 86, 7, 51, 48, 24, 56, 70, 19, 61, 17, 16, 36, 34, 42, 34, 35, 72, 55, 75, 31, 52, 28, 72, 97, 74, 45, 62, 68, 86, 35, 85, 36, 81, 75, 55, 26, 95, 31, 7, 78, 92, 62, 52, 56, 15, 63, 25, 36, 54, 44, 47, 27, 72, 17, 4, 30.
Construct a grouped frequency distribution table with width 10 of each class starting from 0 – 9.