Advertisements
Advertisements
Question
The half life of the homogeneous gaseous reaction \[\ce{SO2Cl2 -> SO2 + Cl2}\] which obeys first order kinetics is 8.0 minutes. How long will it take for the concentration of SO2Cl2 to be reduced to 1% of the initial value?
Solution
We know that, k = `0.693/"t"_(1/2)`
k = `0.693/8.0` minutes = 0.087 minutes−1
For a first order reaction,
t = `2.303/"k" log (["A"_0])/(["A"])`
t = `2.303/(0.087 "min"^-1) log (100/1)`
t = 52.93 min
APPEARS IN
RELATED QUESTIONS
For a first order reaction, show that time required for 99% completion is twice the time required for the completion of 90% of reaction.
A first order reaction takes 23.1 minutes for 50% completion. Calculate the time required for 75% completion of this reaction.
(log 2 = 0.301, log 3 = 0.4771, log 4 = 0.6021)
The half-life period of zero order reaction A → product is given by
(a) `([A]_0)/k`
(b) `0.693/k`
(c) `[A]_0/(2k)`
(d) `(2[A]_0)/k`
A first order reaction takes 10 minutes for 25% decomposition. Calculate t1/2 for the reaction.
(Given : log 2 = 0.3010, log 3 = 0.4771, log 4 = 0.6021)
In a first-order reaction A → product, 80% of the given sample of compound decomposes in 40 min. What is the half-life period of the reaction?
Calculate half-life period of life order reaction whose rate constant is 200 sec–1
A first-order reaction takes 69.3 min for 50% completion. What is the time needed for 80% of the reaction to get completed? (Given: log 5 = 0.6990, log 8 = 0.9030, log 2 = 0.3010)
The amount of C-14 isotope in a piece of wood is found to be 1/16th of its amount present in a fresh piece of wood. The age of wood, half-life period of C-14 is 5770 years, is ______ years.
Obtain a relation, `k_2/k_1 = ((t_(1/2))_2)/((t_(1/2))_1)`, where k1 and k2 are rate constants while (t1/2)1 and (t1/2)2 are half-life periods of the first order reaction at temperatures T1 and T2 respectively. Write the relation for activation energy.
A first order reaction takes 40 min for 30% decomposition. Calculate `"t"_(1/2)`.