Advertisements
Advertisements
Question
The length of a rectangle exceeds its breadth by 5 m. If the breadth were doubled and the length reduced by 9 m, the area of the rectangle would have increased by 140 m². Find its dimensions.
Solution
Let length of the rectangle = xm
then width = (x - 5)m
Area = x(x - 5)sq.m
In second case,
Length of the second rectangle = x - 9
and width = 2(x - 5)m
Area
= (x - 9)2(x - 5)
= 2(x - 9)(x - 5)sq.m
According to the condition,
2(x - 9)(x - 5) = x(-5) + 140
⇒ 2(x2 - 14x + 45) = x2 - 5x + 140
⇒ 2x2 - 28x + 90 = x2 - 5x + 140
⇒ 2x2 - 28x + 90 - x2 + 5x - 140 = 0
⇒ x2 - 23x - 50 = 0
⇒ x2 - 25x + 2x - 50 = 0
⇒ x(x - 25) +2(x - 25) = 0
⇒ (x - 25)(x + 2) = 0
Either x - 25 = 0,
then x = 25
or
x + 2 = 0,
then x = -2,
but it is not possible as it is negative.
∴ Length of the rectangle = 25m
and width = 25 - 5 = 20m.
APPEARS IN
RELATED QUESTIONS
Solve for x
`(x - 1)/(2x + 1) + (2x + 1)/(x - 1) = 2, "where x" != -1/2, 1`
The sum of the squares of two numbers as 233 and one of the numbers as 3 less than twice the other number find the numbers.
If the equation x2 + 4x + k = 0 has real and distinct roots, then
Solve the following equation: 3x2 + 25 x + 42 = 0
The present age of the mother is square of her daughter's present age. 4 years hence, she will be 4 times as old as her daughter. Find their present ages.
Solve the equation 2x `-(1)/x` = 7. Write your answer correct to two decimal places.
Car A travels x km for every litre of petrol, while car B travels (x + 5) km for every litre of petrol.
If car A use 4 litre of petrol more than car B in covering the 400 km, write down and equation in x and solve it to determine the number of litre of petrol used by car B for the journey.
An aeroplane flying with a wind of 30 km/hr takes 40 minutes less to fly 3600 km, than what it would have taken to fly against the same wind. Find the planes speed of flying in still air.
Two pipes running together can fill a tank in `11(1)/(9)` minutes. If one pipe takes 5 minutes more than the other to fill the tank, find the time in which each pipe would/fill the tank.
Solve the following equation by factorisation :
`sqrt(x + 15) = x + 3`