Advertisements
Advertisements
Question
The Price Index Number for year 2004, with respect to year 2000 as base year. is known to be 130. Find the missing numbers in the following table if ∑p0 = 320
Commodity | A | B | C | D | E | F |
Price (in ₹) in 2000 | 40 | 50 | 30 | x | 60 | 100 |
Price (in ₹) in 2000 | 50 | 70 | 30 | 85 | y | 115 |
Solution
We first tabulate the given data.
Commodities | Price in 2000 (Base year) p0 |
Price in 2005 (Current year) p1 |
A | 40 | 50 |
B | 50 | 70 |
C | 30 | 30 |
D | x | 85 |
E | 60 | y |
F | 100 | 115 |
From the above table, we have
∑p0 = 280 + x, ∑p1 = 350 + y
But it is given that ∑p0 = 320, so that
280 + x = 320
∴ x = 40
Further. using the formula
p0 = `(sump_1)/(sump_0) xx 100`
We have, 130 = `(350 + y)/320 xx 100`
∴ `(130 xx 320)/100` = 350 + y
∴ 416 = 350 + y
∴ y = 66
Hence, x = 40 and y = 66
APPEARS IN
RELATED QUESTIONS
Complete the Correlation:
Price Index : Inflation :: ______ : Agricultural production
Choose the correct alternative :
Quantity Index Number by Simple Aggregate Method is given by
Fill in the blank :
Value Index Number by Simple Aggregate Method is given by _______.
State whether the following is True or False :
`(sum"p"_1)/(sum"p"_0) xx 100` is the price Index Number by Simple Aggregate Method.
`sum ("p"_0"q"_0)/("p"_1"q"_1) xx 100` is Value Index Number by Simple Aggregate Method.
Solve the following problem :
Find the Quantity Index Number using Simple Aggregate Method.
Commodity | Base year quantity | Current year quantity |
A | 100 | 130 |
B | 170 | 200 |
C | 210 | 250 |
D | 90 | 110 |
E | 50 | 150 |
Solve the following problem :
Find the Value Index Number using Simple Aggregate Method.
Commodity | Base Year | Current Year | ||
Price | Quantity | Price | Quantity | |
I | 20 | 42 | 22 | 45 |
II | 35 | 60 | 40 | 58 |
III | 50 | 22 | 55 | 24 |
IV | 60 | 56 | 70 | 62 |
V | 25 | 40 | 30 | 41 |
Explain the types of index numbers.
Choose the correct alternative:
`(sum"p"_1"q"_1"w")/(sum"p"_0"q"_0"w") xx 100` gives
State whether the following statement is True or False:
The three types of Index numbers are
i. Price Index Number
ii. Quantity Index Number
iii. Value Index Number
State whether the following statement is True or False:
`sum("q"_1)/("q"_0) xx 100` is the Quantity Index Number by Simple Aggregate Method
State whether the following statement is True or False:
`sum ("P"_1"q"_1)/("p"_0"q"_0) xx 100` is the Value Index Number by Simple Aggregate Method
Find Price Index Number using Simple Aggregate method by taking 2005 as base year.
Commodity | P | Q | R | S | T |
Price in 2005 (in ₹) | 10 | 25 | 14 | 20 | 30 |
Price in 2015 (in ₹) | 32 | 40 | 20 | 45 | 70 |
Calculate Value Index Number for the following using Simple Aggregate Method
Commodity | Base Year | Current Year | ||
Price | Quantity | Price | Quantity | |
A | 30 | 13 | 40 | 15 |
B | 40 | 15 | 70 | 20 |
C | 10 | 12 | 60 | 22 |
D | 50 | 10 | 90 | 18 |
E | 20 | 14 | 100 | 16 |
Calculate Quantity Index Number using Simple Aggregate method
Commodity | I | II | III | IV | V |
Base year Quantity | 140 | 120 | 100 | 200 | 225 |
Current year Quantity | 100 | 80 | 70 | 150 | 185 |
Find x if the Price Index Number by Simple Aggregate Method is 125
Commodity | P | Q | R | S | T |
Base Year Price (in ₹) | 10 | 8 | 12 | 24 | 18 |
Current Year Price (in ₹) | 14 | 10 | x | 28 | 22 |
Find values x and y if the Price Index Number by Simple Aggregate Method by taking 2001 as base year is 120, given `sum"p"_1` = 300.
Commodity | A | B | C | D |
Price (in ₹) in 2001 | 90 | x | 90 | 30 |
Price (in ₹) in 2004 | 95 | 60 | y | 35 |
Find x from following data if the Value Index Number is 200.
Commodity | Base Year | Current Year | ||
Prive | Quantity | Price | Quantity | |
A | 10 | 10 | 20 | 10 |
B | 8 | 20 | 22 | 15 |
C | 2 | x | 8 | 10 |
D | 9 | 10 | 16 | 10 |
E | 5 | 6 | 3 | 10 |
Choose the correct pair:
Group A | Group B |
A. Price Index | (a) `(sump_1q_1)/(sump_0q_0) xx 100` |
B. Value Index | (b) `(sumq_1)/(sumq_0) xx 100` |
C. Quantity Index | (c) `(sump_1q_1)/(sump_0q_1) xx 100` |
D. Paasche's Index | (d) `(sump_1)/(sump_0) xx 100` |
Choose the correct pair :
Group A | Group B |
1) Price Index | a) `(sum p_1q_1)/(sum p_0q_0) xx 100` |
2) Value Index | b) `(sum q_1)/(sum q_0) xx 100` |
3) Quantity Index | c) `(sum p_1q_1)/(sum p_0 q_1) xx 100` |
4) Paasche's Index | d) `(sum p_1)/(sum p_0) xx 100` |
Choose the correct pair:
Group A | Group B |
1) Price Index | a) `(sump_1q_1)/(sump_0 q_0) × 100` |
2) Value Index | b) `(sumq_1)/(sumq_0) × 100` |
3) Quantity Index | c) `(sump_1q_1)/(sump_0 q_1) × 100` |
4) Paasche's Index | d) `(sump_1)/(sump_0) × 100` |
Calculate the price index number for the given data.
Commodity | A | B |
Price in 2020 (₹) | 20 | 30 |
Price in 2021 (₹) | 40 | 40 |
Identify and explain the concept from the given illustration:
Mihir prepared the share price index number.
Identify and explain the concept from the given illustration:
Pooja collected information regarding a change in the quantity of imports of India from 2019 to 2020 and prepared an index number.
Choose the correct pair :
Group A | Group B | ||
1) | Price Index | a) |
`(sump1q1)/(sump0q0)xx100` |
2) | Value Index | b) | `(sumq1)/(sumq0)xx100` |
3) | Quantity Index | c) | `(sump1q1)/(sump0q1)xx100` |
4) | Paasche's Index | d) | `(sump1)/(sump0)xx100` |
Choose the correct pair:
Group A | Group B | ||
1) | Price Index | a) | `(sum"p"_1"q"_1)/(sum"p"_0"q"_0)xx100` |
2) | Value Index | b) | `(sum"q"_1)/(sumq"_0)xx100` |
3) | Quantity Index | c) | `(sum"p"_1"q"_1)/(sum"p"_0"q"_1)xx100` |
4) | Paasche's Index | d) | `(sum"p"_1)/(sum"p"_0")xx100` |