Advertisements
Advertisements
Question
The product of the digits of a two digit number is 24. If its unit’s digit exceeds twice its ten’s digit by 2; find the number.
Solution
Let the ten’s and unit’s digit of the required number be x and y respectively.
From the given information,
x × y = 24
y = `24/x` ...(1)
Also, y = 2x + 2
`24/x = 2x + 2` ...[Using (1)]
24 = 2x2 + 2x
2x2 + 2x – 24 = 0
x2 + x – 12 = 0
(x + 4)(x – 3) = 0
x = – 4, 3
The digit of a number cannot be negative, so x = 3
∴ y = `24/3` = 8
Thus, the required number is 38.
APPEARS IN
RELATED QUESTIONS
The sum of the squares of two consecutive natural numbers is 41. Find the numbers.
The sum of the squares of two consecutive positive even numbers is 52. Find the numbers.
Three positive numbers are in the ratio `1/2 : 1/3 : 1/4`. Find the numbers if the sum of their squares is 244.
In a two-digit number, the ten’s digit is bigger. The product of the digits is 27 and the difference between two digits is 6. Find the number.
The sum of a number and its reciprocal is 5.2. The number is ______.
Two integers differ by 2 and sum of their squares is 52. The integers are ______.
In a school, a class has 40 students out of which x are girls. If the product of the number of girls and number of boys in the class is 375; the number of boys in the class is ______.
The product of two whole numbers, each greater than 4, is 35; the numbers are ______.
The difference between the digits of a two-digit number is 2 and the product of digits is 24. If tens digit is bigger, the number is ______.
The sum of a number and its reciprocal is 4.25; the number is ______.