Advertisements
Advertisements
Question
The scalar product of the vector `veca=hati+hatj+hatk` with a unit vector along the sum of vectors `vecb=2hati+4hatj−5hatk and vecc=λhati+2hatj+3hatk` is equal to one. Find the value of λ and hence, find the unit vector along `vecb +vecc`
Solution
Given:
`veca=hati+hatj+hatk, vecb=2hati+4hatj−5hatk and vecc=λhati+2hatj+3hatk`
now
`vecb+vecc=(2+lambda)hati+6hatj-2hatk`
Let `hatd` denote the unit vector along `vecb+vecc` Then,
`hatd=(vecb+vecc)/|vecb+vecc|`
`=>hatd=((2+lambda)hati+6hatj-2hatk)/sqrt((2+lambda)^2+(6)^2+(-2)^2)`
`=>hatd=((2+lambda)hati+6hatj-2hatk)/sqrt((2+lambda)^2+40)`
``
Also `veca.hatd=1`
`=>(hati+hatj+hatk).((2+lambda)hati+6hatj-2hatk)/sqrt((2+lambda)^2+40)=1`
`=>(hati+hatj+hatk)[(2+lambda)hati+6hatj-2hatk]=sqrt((2+lambda)^2+40)`
`=>2+lambda+6-2=sqrt(2+lambda)^2+40)`
`=>(lambda+6)^2=(2+lambda)^2+40`
`=>8lambda=8`
`=>lambda=1`
`therefore hatd=((2+lambda)hati+6hatj-2hatk)/sqrt((2+1)^2+40)=(3hati+6hatj-2hatk)/sqrt(49)`
`"i.e " hatd=1/7(3hati+6hatj-2hatk)`
APPEARS IN
RELATED QUESTIONS
If `veca ` and `vecb` are two unit vectors such that `veca+vecb` is also a unit vector, then find the angle between `veca` and `vecb`
If `veca and vecb` are two vectors such that `|veca+vecb|=|veca|,` then prove that vector `2veca+vecb` is perpendicular to vector `vecb`
Show that each of the given three vectors is a unit vector:
`1/7 (2hati + 3hatj + 6hatj), 1/7(3hati - 6hatj + 2hatk), 1/7(6hati + 2hatj - 3hatk)`
Also, show that they are mutually perpendicular to each other.
Find `lambda` if the scalar projection of `vec a = lambda hat i + hat j + 4 hat k` on `vec b = 2hati + 6hatj + 3hatk` is 4 units
Find \[\vec{a} \cdot \vec{b}\] when
\[\vec{a} = \hat{j} - \hat{k} \text{ and } \vec{b} = 2 \hat{i} + 3 \hat{j} - 2 \hat{k}\]
For what value of λ are the vectors \[\vec{a} \text{ and }\vec{b}\] perpendicular to each other if \[\vec{a} = \lambda \hat{i} + 2 \hat{j} + \hat{k} \text{ and } \vec{b} = 4\hat{i} - 9 \hat{j} + 2\hat{k}\]
If \[\vec{a} \text{ and } \vec{b}\] are two vectors such that \[\left| \vec{a} \right| = 4, \left| \vec{b} \right| = 3 \text{ and } \vec{a} \cdot \vec{b} = 6\] find the angle between \[\vec{a} \text{ and } \vec{b} .\]
\[\text{ If } \vec{a} = \hat{i} - \hat{j} \text{ and } \vec{b} = - \hat{j} + 2\hat{k} , \text{find} \left( \vec{a} - 2 \vec{b} \right) \cdot \left( \vec{a} + \vec{b} \right) .\]
If \[\vec{a} \text{ and } \vec{b}\] are two vectors such that \[\left( \vec{a} + \vec{b} \right) . \left( \vec{a} - \vec{b} \right) = 0,\] find the relation between the magnitudes of \[\vec{a} \text{ and } \vec{b}\]
For any two vectors \[\vec{a} \text{ and } \vec{b}\] write when \[\left| \vec{a} + \vec{b} \right| = \left| \vec{a} - \vec{b} \right|\] holds.
If \[\vec{a} = \hat{i} - \hat{j} \text{ and } \vec{b} = - \hat{j} + \hat{k} ,\] find the projection of \[\vec{a} \text{ on } \vec{b}\]
Write the component of \[\vec{b}\] along \[\vec{a}\]
Find the value of θ ∈(0, π/2) for which vectors \[\vec{a} = \left( \sin \theta \right) \hat{i} + \left( \cos \theta \right) \hat{j} \text{ and } \vec{b} = \hat{i} - \sqrt{3} \hat{j} + 2 \hat{k}\] are perpendicular.
If \[\vec{a} \text{ and } \vec{b}\] are mutually perpendicular unit vectors, write the value of \[\left| \vec{a} + \vec{b} \right| .\]
If \[\vec{a} , \vec{b} \text{ and } \vec{c}\] are mutually perpendicular unit vectors, write the value of \[\left| \vec{a} + \vec{b} + \vec{c} \right| .\]
Write the value of p for which \[\vec{a} = 3 \hat{i} + 2 \hat{j} + 9 \hat{k} \text{ and } \vec{b} = \hat{i} + p \hat{j} + 3 \hat{k}\] are parallel vectors .
Write the projection of the vector \[\hat{i} + 3 \hat{j} + 7 \hat{k}\] on the vector \[2 \hat{i} - 3 \hat{j} + 6 \hat{k}\]
Find λ when the projection of \[\vec{a} = \lambda \hat{i} + \hat{j} + 4 \hat{k} \text{ on } \vec{b} = 2 \hat{i} + 6 \hat{j} + 3 \hat{k}\] is 4 units.
If the vectors \[\vec{a}\] and \[\vec{b}\] are such that \[\left| \vec{a} \right| = 3, \left| \vec{b} \right| = \frac{2}{3}\] and \[\vec{a} \times \vec{b}\] is a unit vector, then write the angle between \[\vec{a}\] and \[\vec{b}\]
If \[\vec{a}\] and \[\vec{b}\] are two unit vectors such that \[\vec{a} + \vec{b}\] is also a unit vector, then find the angle between \[\vec{a}\] and \[\vec{b}\]
Prove that, for any three vectors \[\vec{a} , \vec{b} , \vec{c}\] \[\left[ \vec{a} + \vec{b} , \vec{b} + \vec{c} , \vec{c} + \vec{a} \right] = 2 \left[ \vec{a} , \vec{b} , \vec{c} \right]\].
Show that the vectors \[\vec{a,} \vec{b,} \vec{c}\] are coplanar if and only if \[\vec{a} + \vec{b}\], \[\vec{b} + \vec{c}\] and \[\vec{c} + \vec{a}\] are coplanar.
If \[\vec{a} \text{ and } \vec{b}\] are two non-collinear unit vectors such that \[\left| \vec{a} + \vec{b} \right| = \sqrt{3},\] find \[\left( 2 \vec{a} - 5 \vec{b} \right) \cdot \left( 3 \vec{a} + \vec{b} \right) .\]
Let `vec("a") = hat"i" + 2hat"j" - 3hat"k"` and `vec("b") = 3hat"i" -"j" +2hat("k")` be two vectors. Show that the vectors `(vec("a")+vec("b"))` and `(vec("a")-vec("b"))`are perpendicular to each other.
The angle between two vectors `vec"a"` and `vec"b"` with magnitudes `sqrt(3)` and 4, respectively, and `vec"a" * vec"b" = 2sqrt(3)` is ______.
If two vectors `veca` and `vecb` are such that `|veca|` = 2, `|vecb|` = 3 and `veca.vecb` = 4, then `|veca - 2vecb|` is equal to ______.
If `veca.hati = veca.(hati + hatj) = veca.(hati + hatj + hatk)` = 1, then `veca` is ______.