Advertisements
Advertisements
Question
The sum of a two-digit number and the number obtained by reversing the digits is 110 and the difference of two digits is 2. Find the number.
Solution
Let x be the digit at ten's place and y be the digit at unit's place.
Then, the number is 10x + y.
Number obtained by reversing the digit = 10y + x
According to given information, we have
(10x + y) + (10y + x) = 110
⇒ 11x + 11y = 110
⇒ 11(x + y) = 9
⇒ x + y = 10 ....(i)
Also, x - y = 2 ....(ii)
Adding eqns. (i) and (ii), we get
2x = 12
⇒ x = 6
⇒ 6 + y = 10
⇒ y = 4
∴ Required number
= 10x + y
= 10 x 6 + 4
= 60 + 4
= 64.
APPEARS IN
RELATED QUESTIONS
For solving pair of equation, in this exercise use the method of elimination by equating coefficients :
3x - y = 23
`x/3 + y/4 = 4`
For solving pair of equation, in this exercise use the method of elimination by equating coefficients :
`[5y]/2 - x/3 = 8`
`y/2 + [5x]/3 = 12`
For solving pair of equation, in this exercise use the method of elimination by equating coefficients :
`[ x - y ]/6 = 2( 4 - x )`
2x + y = 3( x - 4 )
If 2x + y = 23 and 4x - y = 19; find the values of x - 3y and 5y - 2x.
Solve the following pairs of equations:
`(3)/(5) x - (2)/(3) y + 1` = 0
`(1)/(3) y + (2)/(5) x ` = 4
Solve the following pairs of equations:
`x/(3) + y/(4)` = 11
`(5x)/(6) - y/(3)` = -7
Solve the following pairs of equations:
`(x + y)/(xy)` = 2
`(x - y)/(xy)` = 6
Solve the following pairs of equations:
`(2)/(3x + 2y) + (3)/(3x - 2y) = (17)/(5)`
`(5)/(3x + 2y) + (1)/(3x - 2y)` = 2
If 2x + y = 23 and 4x - y = 19 : find the value of x - 3y and 5y - 2x.
A boat goes 18 km upstream in 3 hours and 24 km downstream in 2 hours. Find the speed of the boat in still water and the speed of the stream.